Ana García-Rández , Luciano Orden , Evan A.N. Marks , Javier Andreu-Rodríguez , Samuel Franco-Luesma , Encarnación Martínez-Sabater , José Antonio Saéz-Tovar , María Dolores Pérez-Murcia , Enrique Agulló , María Ángeles Bustamante , Maite Cháfer , Raúl Moral
{"title":"Monitoring of greenhouse gas emissions and compost quality during olive mill waste co-composting at industrial scale: The effect of N and C sources","authors":"Ana García-Rández , Luciano Orden , Evan A.N. Marks , Javier Andreu-Rodríguez , Samuel Franco-Luesma , Encarnación Martínez-Sabater , José Antonio Saéz-Tovar , María Dolores Pérez-Murcia , Enrique Agulló , María Ángeles Bustamante , Maite Cháfer , Raúl Moral","doi":"10.1016/j.wasman.2024.11.039","DOIUrl":null,"url":null,"abstract":"<div><div>Olive mill wastes (OMW) management by composting allows to obtain valuable fertilizing products, but also implies significant fluxes of greenhouse gases (GHG). For a proper OMW composting, high C- and N co-substrates are necessary, but little is known concerning their effect on GHG emissions in OMW-industrial scale composting. In this study, different co-composting agents (cattle manure (CM), poultry manure (PM), sheep manure (SM) and pig slurry solid fraction (PSSF) as N sources and olive leaves (OLW) and urban pruning residues (UPR) as bulking agents and C sources) were used for OMW composting at industrial scale. Physico-chemical and chemical properties in the composting samples, and GHG (CO<sub>2</sub>, CH<sub>4</sub> and N<sub>2</sub>O) fluxes were monitored in 12 industrial-scale windrows. GHG emissions were firstly influenced by N source, with the highest accumulated global warming potential (GWP) associated with PM (512 kg CO<sub>2</sub>eq pile<sup>-1</sup>), since PM composts were associated with the greatest N<sub>2</sub>O (0.33 kg pile<sup>-1</sup>) and CH<sub>4</sub> emissions (15.67 kg pile<sup>-1</sup>). Meanwhile, PSSF was associated with the highest CO<sub>2</sub> emissions (1113 kg pile<sup>-1</sup>). UPR as a bulking agent facilitated 10 % greater mineralization of the biomass than OLW, however this C-source was not associated with higher GHG emissions. The results showed that while mineralization dynamics may be impacted by C sources, GHG emissions were mainly conditioned by the characteristics of nutrient-heavy feedstocks (PM and SM). Moreover, manures as nitrogen-laden co-substrates had widely differing effects on total GWP, and that of individual gases, but further research is necessary to understand the mechanisms explaining such differences.</div></div>","PeriodicalId":23969,"journal":{"name":"Waste management","volume":"193 ","pages":"Pages 33-43"},"PeriodicalIF":7.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste management","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0956053X24006123","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Olive mill wastes (OMW) management by composting allows to obtain valuable fertilizing products, but also implies significant fluxes of greenhouse gases (GHG). For a proper OMW composting, high C- and N co-substrates are necessary, but little is known concerning their effect on GHG emissions in OMW-industrial scale composting. In this study, different co-composting agents (cattle manure (CM), poultry manure (PM), sheep manure (SM) and pig slurry solid fraction (PSSF) as N sources and olive leaves (OLW) and urban pruning residues (UPR) as bulking agents and C sources) were used for OMW composting at industrial scale. Physico-chemical and chemical properties in the composting samples, and GHG (CO2, CH4 and N2O) fluxes were monitored in 12 industrial-scale windrows. GHG emissions were firstly influenced by N source, with the highest accumulated global warming potential (GWP) associated with PM (512 kg CO2eq pile-1), since PM composts were associated with the greatest N2O (0.33 kg pile-1) and CH4 emissions (15.67 kg pile-1). Meanwhile, PSSF was associated with the highest CO2 emissions (1113 kg pile-1). UPR as a bulking agent facilitated 10 % greater mineralization of the biomass than OLW, however this C-source was not associated with higher GHG emissions. The results showed that while mineralization dynamics may be impacted by C sources, GHG emissions were mainly conditioned by the characteristics of nutrient-heavy feedstocks (PM and SM). Moreover, manures as nitrogen-laden co-substrates had widely differing effects on total GWP, and that of individual gases, but further research is necessary to understand the mechanisms explaining such differences.
通过堆肥管理橄榄厂废物(OMW)可以获得有价值的肥料产品,但也意味着大量的温室气体(GHG)通量。高碳、高氮共基质对于合理的OMW堆肥是必要的,但它们对OMW工业规模堆肥中温室气体排放的影响知之甚少。本研究采用牛粪(CM)、禽粪(PM)、羊粪(SM)和猪浆固体组分(PSSF)作为N源,橄榄叶(OLW)和城市修剪残渣(UPR)作为膨化剂和C源,在工业规模上进行了OMW堆肥。在12个工业尺度窗口中监测了堆肥样品的物理化学和化学性质以及温室气体(CO2, CH4和N2O)通量。温室气体排放首先受到N源的影响,累积全球变暖潜势(GWP)与PM相关(512 kg CO2eq pile-1)最高,因为PM堆肥与最大的N2O (0.33 kg pile-1)和CH4 (15.67 kg pile-1)相关。同时,PSSF与最高的CO2排放量(1113 kg桩-1)相关。UPR作为膨胀剂比OLW促进了10%的生物质矿化,但这种碳源与更高的温室气体排放无关。结果表明,矿化动态受碳源影响,而温室气体排放主要受重养分原料(PM和SM)的影响。此外,作为含氮共基质的肥料对总GWP和单个气体的影响差异很大,但需要进一步研究以了解解释这种差异的机制。
期刊介绍:
Waste Management is devoted to the presentation and discussion of information on solid wastes,it covers the entire lifecycle of solid. wastes.
Scope:
Addresses solid wastes in both industrialized and economically developing countries
Covers various types of solid wastes, including:
Municipal (e.g., residential, institutional, commercial, light industrial)
Agricultural
Special (e.g., C and D, healthcare, household hazardous wastes, sewage sludge)