Isolation and characterization of cellulose from spent ground coffee (Coffea Arabica L.): A comparative study

IF 7.1 2区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Yasemin SEKİ
{"title":"Isolation and characterization of cellulose from spent ground coffee (Coffea Arabica L.): A comparative study","authors":"Yasemin SEKİ","doi":"10.1016/j.wasman.2024.11.048","DOIUrl":null,"url":null,"abstract":"<div><div>This study compares several methods, such as sodium chlorite, nitric acid, and hydrogen peroxide treatments with alkali pre-treatments, for efficiency of extracting cellulose from spent ground coffee. The extracted cellulose was characterized by Fourier transform infrared spectroscopy (FTIR), x-ray diffractometry (XRD), thermogravimetric analysis (TGA), colour analysis, chemical composition, and particle size analysis. FTIR confirmed the removal of non-cellulosic components from coffee, which correlates with chemical composition and colour analysis results. The highest cellulose content (96.7 %) and the highest whiteness index (71.24) were obtained for the cellulose materials extracted using nitric acid-sodium chlorite and sodium chlorite with alkali pre-treatments, respectively. XRD data reveals that the treated coffee presented exhibited a higher crystallinity index compared to the untreated one. The highest increase in crystallinity index (from 54.9 % to 66.3 %) was achieved for the cellulose extracted using a 20 % hydrogen peroxide treatment with alkali pre-treatment. The maximum degradation temperature of the spent ground coffee increased from 292.0 to 310.5 °C after treatment with 10 wt% hydrogen peroxide and alkali pre-treatment. In summary, these findings highlight the great potential of spent ground coffee as a source of cellulose.</div></div>","PeriodicalId":23969,"journal":{"name":"Waste management","volume":"193 ","pages":"Pages 54-61"},"PeriodicalIF":7.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste management","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0956053X24006238","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study compares several methods, such as sodium chlorite, nitric acid, and hydrogen peroxide treatments with alkali pre-treatments, for efficiency of extracting cellulose from spent ground coffee. The extracted cellulose was characterized by Fourier transform infrared spectroscopy (FTIR), x-ray diffractometry (XRD), thermogravimetric analysis (TGA), colour analysis, chemical composition, and particle size analysis. FTIR confirmed the removal of non-cellulosic components from coffee, which correlates with chemical composition and colour analysis results. The highest cellulose content (96.7 %) and the highest whiteness index (71.24) were obtained for the cellulose materials extracted using nitric acid-sodium chlorite and sodium chlorite with alkali pre-treatments, respectively. XRD data reveals that the treated coffee presented exhibited a higher crystallinity index compared to the untreated one. The highest increase in crystallinity index (from 54.9 % to 66.3 %) was achieved for the cellulose extracted using a 20 % hydrogen peroxide treatment with alkali pre-treatment. The maximum degradation temperature of the spent ground coffee increased from 292.0 to 310.5 °C after treatment with 10 wt% hydrogen peroxide and alkali pre-treatment. In summary, these findings highlight the great potential of spent ground coffee as a source of cellulose.
从废咖啡(Coffea Arabica L.)中分离和表征纤维素:比较研究。
本研究比较了几种方法,如亚氯酸钠、硝酸和过氧化氢处理与碱预处理,以提高从废咖啡粉中提取纤维素的效率。采用傅里叶变换红外光谱(FTIR)、x射线衍射(XRD)、热重分析(TGA)、颜色分析、化学成分和粒度分析对提取的纤维素进行了表征。FTIR证实了咖啡中非纤维素成分的去除,这与化学成分和颜色分析结果有关。硝酸-亚氯酸钠和碱预处理亚氯酸钠提取的纤维素含量最高(96.7%),白度指数最高(71.24)。XRD数据表明,处理后的咖啡结晶度比未处理的咖啡高。用20%过氧化氢加碱预处理提取的纤维素,结晶度指数从54.9%提高到66.3%。经10 wt%双氧水和碱预处理后,废咖啡粉的最高降解温度由292.0℃提高到310.5℃。总之,这些发现强调了咖啡渣作为纤维素来源的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Waste management
Waste management 环境科学-工程:环境
CiteScore
15.60
自引率
6.20%
发文量
492
审稿时长
39 days
期刊介绍: Waste Management is devoted to the presentation and discussion of information on solid wastes,it covers the entire lifecycle of solid. wastes. Scope: Addresses solid wastes in both industrialized and economically developing countries Covers various types of solid wastes, including: Municipal (e.g., residential, institutional, commercial, light industrial) Agricultural Special (e.g., C and D, healthcare, household hazardous wastes, sewage sludge)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信