Efficient reduction of electric arc furnace dust by CO/H2 derived from waste biomass: Biomass gasification, zinc removal kinetics and mechanism.

IF 7.1 2区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Xingnan Huo, Dingzheng Wang, Jinlin Yang, Shaojian Ma
{"title":"Efficient reduction of electric arc furnace dust by CO/H<sub>2</sub> derived from waste biomass: Biomass gasification, zinc removal kinetics and mechanism.","authors":"Xingnan Huo, Dingzheng Wang, Jinlin Yang, Shaojian Ma","doi":"10.1016/j.wasman.2024.11.049","DOIUrl":null,"url":null,"abstract":"<p><p>Electric arc furnace dust (EAFD) represents hazardous solid waste that poses substantial environmental risks, necessitating the urgent development of green and efficient recycling methods. Biomass, a renewable and carbon-neutral resource, offers a viable solution. This study proposes a synergistic process that integrates biomass gasification with reducing EAFD. The kinetics of zinc removal during the process were examined, and the synergistic reaction mechanisms between biomass gasification and EAFD reduction were analyzed through PY-GC/MS, SEM/EDS, XRD, TEM, and thermodynamic calculations. The findings demonstrated an exceptional zinc removal efficiency of 99.88%, governed primarily by interfacial chemical reactions. The synergistic reactions mutually enhanced the reduction of EAFD and the reforming of pyrolysis products. Furthermore, the process achieved low carbon emissions owing to the carbon cycle established through coupling reactions between the dust and biomass.</p>","PeriodicalId":23969,"journal":{"name":"Waste management","volume":"193 ","pages":"44-53"},"PeriodicalIF":7.1000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.wasman.2024.11.049","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Electric arc furnace dust (EAFD) represents hazardous solid waste that poses substantial environmental risks, necessitating the urgent development of green and efficient recycling methods. Biomass, a renewable and carbon-neutral resource, offers a viable solution. This study proposes a synergistic process that integrates biomass gasification with reducing EAFD. The kinetics of zinc removal during the process were examined, and the synergistic reaction mechanisms between biomass gasification and EAFD reduction were analyzed through PY-GC/MS, SEM/EDS, XRD, TEM, and thermodynamic calculations. The findings demonstrated an exceptional zinc removal efficiency of 99.88%, governed primarily by interfacial chemical reactions. The synergistic reactions mutually enhanced the reduction of EAFD and the reforming of pyrolysis products. Furthermore, the process achieved low carbon emissions owing to the carbon cycle established through coupling reactions between the dust and biomass.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Waste management
Waste management 环境科学-工程:环境
CiteScore
15.60
自引率
6.20%
发文量
492
审稿时长
39 days
期刊介绍: Waste Management is devoted to the presentation and discussion of information on solid wastes,it covers the entire lifecycle of solid. wastes. Scope: Addresses solid wastes in both industrialized and economically developing countries Covers various types of solid wastes, including: Municipal (e.g., residential, institutional, commercial, light industrial) Agricultural Special (e.g., C and D, healthcare, household hazardous wastes, sewage sludge)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信