{"title":"Polygenic Selection and Environmental Influence on Adult Body Height: Genetic and Living Standard Contributions Across Diverse Populations.","authors":"Davide Piffer, Emil O W Kirkegaard","doi":"10.1017/thg.2024.43","DOIUrl":null,"url":null,"abstract":"<p><p>We analyzed whole-genome sequencing (WGS) data from 51 populations and combined WGS and array data from 89 populations. Multiple types of polygenic scores (PGS) were employed, derived from multi-ancestry, between-family genome-wide association study (GWAS; MIX-Height), European-ancestry, between-family GWAS (EUR-Height), and European-ancestry siblings GWAS (SIB-Height). Our findings demonstrate that both genetic and environmental factors significantly influence adult body height between populations. Models that included both genetic and environmental predictors best explained population differences in adult body height, with the MIX-Height PGS and environmental factors (Human Development Index [HDI] + per capita caloric intake) achieving an <i>R</i><sup>2</sup> of .83. Our findings shed light on Deaton's 'African paradox', which noted the relatively tall stature of African populations despite poor nutrition and childhood health. Contrary to Deaton's hypotheses, we demonstrate that both genetic differences and environmental factors significantly influence body height in countries with high infant mortality rates. This suggests that the observed tall stature in African populations can be attributed, in part, to a high genetic predisposition for body height. Furthermore, tests of divergent selection based on the Q<sub>ST</sub> (i.e., standardized measure of the genetic differentiation of a quantitative trait among populations) and F<sub>ST</sub> (neutral marker loci) measures exceeded neutral expectations, reaching statistical significance (<i>p</i> < .01) with the MIX-Height PGS but not with the SIB-Height PGS. This result indicates potential selective pressures on body height-related genetic variants across populations.</p>","PeriodicalId":23446,"journal":{"name":"Twin Research and Human Genetics","volume":" ","pages":"1-18"},"PeriodicalIF":1.0000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Twin Research and Human Genetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1017/thg.2024.43","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
We analyzed whole-genome sequencing (WGS) data from 51 populations and combined WGS and array data from 89 populations. Multiple types of polygenic scores (PGS) were employed, derived from multi-ancestry, between-family genome-wide association study (GWAS; MIX-Height), European-ancestry, between-family GWAS (EUR-Height), and European-ancestry siblings GWAS (SIB-Height). Our findings demonstrate that both genetic and environmental factors significantly influence adult body height between populations. Models that included both genetic and environmental predictors best explained population differences in adult body height, with the MIX-Height PGS and environmental factors (Human Development Index [HDI] + per capita caloric intake) achieving an R2 of .83. Our findings shed light on Deaton's 'African paradox', which noted the relatively tall stature of African populations despite poor nutrition and childhood health. Contrary to Deaton's hypotheses, we demonstrate that both genetic differences and environmental factors significantly influence body height in countries with high infant mortality rates. This suggests that the observed tall stature in African populations can be attributed, in part, to a high genetic predisposition for body height. Furthermore, tests of divergent selection based on the QST (i.e., standardized measure of the genetic differentiation of a quantitative trait among populations) and FST (neutral marker loci) measures exceeded neutral expectations, reaching statistical significance (p < .01) with the MIX-Height PGS but not with the SIB-Height PGS. This result indicates potential selective pressures on body height-related genetic variants across populations.
期刊介绍:
Twin Research and Human Genetics is the official journal of the International Society for Twin Studies. Twin Research and Human Genetics covers all areas of human genetics with an emphasis on twin studies, genetic epidemiology, psychiatric and behavioral genetics, and research on multiple births in the fields of epidemiology, genetics, endocrinology, fetal pathology, obstetrics and pediatrics.
Through Twin Research and Human Genetics the society aims to publish the latest research developments in twin studies throughout the world.