Micaela Chacón, Guadalupe Alvarez-Gonzalez, Piya Gosalvitr, Adokiye Berepiki, Karl Fisher, Rosa Cuéllar-Franca, Neil Dixon
{"title":"Complex waste stream valorization through combined enzymatic hydrolysis and catabolic assimilation by Pseudomonas putida.","authors":"Micaela Chacón, Guadalupe Alvarez-Gonzalez, Piya Gosalvitr, Adokiye Berepiki, Karl Fisher, Rosa Cuéllar-Franca, Neil Dixon","doi":"10.1016/j.tibtech.2024.10.020","DOIUrl":null,"url":null,"abstract":"<p><p>Biogenic waste-derived feedstocks for production of fuels, chemicals, and materials offer great potential supporting the transition to net-zero and greater circularity. However, such feedstocks are heterogeneous and subject to geographical and seasonal variability. Here, we show that, through careful strain selection and metabolic engineering, Pseudomonas putida can be employed to permit efficient co-utilization of highly heterogeneous substrate compositions derived from hydrolyzed mixed municipal-like waste fractions (food, plastic, organic, paper, cardboard, and textiles) for growth and synthesis of exemplar bioproducts. Design of experiments was employed to explore the combinatorial space of nine waste-derived monomers, displaying robust catabolic efficiency regardless of substrate composition. Prospective Life-Cycle Assessment (LCA) and Life-Cycle Costing (LCC) illustrated the climate change (CC) and economic advantages of biomanufacturing compared with conventional waste treatment options, demonstrating a 41-62% potential reduction in CC impact. This work demonstrates the potential for expanding treatment strategies for mixed waste to include engineered microbes.</p>","PeriodicalId":23324,"journal":{"name":"Trends in biotechnology","volume":" ","pages":""},"PeriodicalIF":14.3000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.tibtech.2024.10.020","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Biogenic waste-derived feedstocks for production of fuels, chemicals, and materials offer great potential supporting the transition to net-zero and greater circularity. However, such feedstocks are heterogeneous and subject to geographical and seasonal variability. Here, we show that, through careful strain selection and metabolic engineering, Pseudomonas putida can be employed to permit efficient co-utilization of highly heterogeneous substrate compositions derived from hydrolyzed mixed municipal-like waste fractions (food, plastic, organic, paper, cardboard, and textiles) for growth and synthesis of exemplar bioproducts. Design of experiments was employed to explore the combinatorial space of nine waste-derived monomers, displaying robust catabolic efficiency regardless of substrate composition. Prospective Life-Cycle Assessment (LCA) and Life-Cycle Costing (LCC) illustrated the climate change (CC) and economic advantages of biomanufacturing compared with conventional waste treatment options, demonstrating a 41-62% potential reduction in CC impact. This work demonstrates the potential for expanding treatment strategies for mixed waste to include engineered microbes.
期刊介绍:
Trends in Biotechnology publishes reviews and perspectives on the applied biological sciences, focusing on useful science applied to, derived from, or inspired by living systems.
The major themes that TIBTECH is interested in include:
Bioprocessing (biochemical engineering, applied enzymology, industrial biotechnology, biofuels, metabolic engineering)
Omics (genome editing, single-cell technologies, bioinformatics, synthetic biology)
Materials and devices (bionanotechnology, biomaterials, diagnostics/imaging/detection, soft robotics, biosensors/bioelectronics)
Therapeutics (biofabrication, stem cells, tissue engineering and regenerative medicine, antibodies and other protein drugs, drug delivery)
Agroenvironment (environmental engineering, bioremediation, genetically modified crops, sustainable development).