TdCCA with Dual-Modal Signal Fusion: Degenerated Occipital and Frontal Connectivity of Adult Moyamoya Disease for Early Identification.

IF 3.8 2区 医学 Q1 CLINICAL NEUROLOGY
Yuchen Ran, Yingwei Fan, Shuang Wu, Chao Chen, Yangxi Li, Tianxin Gao, Houdi Zhang, Cong Han, Xiaoying Tang
{"title":"TdCCA with Dual-Modal Signal Fusion: Degenerated Occipital and Frontal Connectivity of Adult Moyamoya Disease for Early Identification.","authors":"Yuchen Ran, Yingwei Fan, Shuang Wu, Chao Chen, Yangxi Li, Tianxin Gao, Houdi Zhang, Cong Han, Xiaoying Tang","doi":"10.1007/s12975-024-01313-1","DOIUrl":null,"url":null,"abstract":"<p><p>Cognitive impairment in patients with moyamoya disease (MMD) manifests earlier than clinical symptoms. Early identification of brain connectivity changes is essential for uncovering the pathogenesis of cognitive impairment in MMD. We proposed a temporally driven canonical correlation analysis (TdCCA) method to achieve dual-modal synchronous information fusion from electroencephalogram (EEG) and functional near-infrared spectroscopy (fNIRS) for exploring the differences in brain connectivity between MMD and normal control groups. The dual-modal fusion features were extracted based on the imaginary part of coherence of the EEG signal (EEG iCOH) and the Pearson correlation coefficients of the fNIRS signal (fNIRS COR) in the resting and working memory state. The machine learning model showed that the accuracy of TdCCA method reached 97%, far higher than single-modal features and feature-level fusion CCA method. Brain connectivity analysis revealed a significant reduction in the strength of the connections between the right occipital lobe and frontal lobes (EEG iOCH: p = 0.022, fNIRS COR p = 0.011) in MMD. These differences reflected the impaired transient memory and executive function in MMD patients. This study contributes to the understanding of the neurophysiological nature of cognitive impairment in MMD and provides a potential adjuvant early identification method for individuals with chronic cerebral ischemia.</p>","PeriodicalId":23237,"journal":{"name":"Translational Stroke Research","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Stroke Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12975-024-01313-1","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cognitive impairment in patients with moyamoya disease (MMD) manifests earlier than clinical symptoms. Early identification of brain connectivity changes is essential for uncovering the pathogenesis of cognitive impairment in MMD. We proposed a temporally driven canonical correlation analysis (TdCCA) method to achieve dual-modal synchronous information fusion from electroencephalogram (EEG) and functional near-infrared spectroscopy (fNIRS) for exploring the differences in brain connectivity between MMD and normal control groups. The dual-modal fusion features were extracted based on the imaginary part of coherence of the EEG signal (EEG iCOH) and the Pearson correlation coefficients of the fNIRS signal (fNIRS COR) in the resting and working memory state. The machine learning model showed that the accuracy of TdCCA method reached 97%, far higher than single-modal features and feature-level fusion CCA method. Brain connectivity analysis revealed a significant reduction in the strength of the connections between the right occipital lobe and frontal lobes (EEG iOCH: p = 0.022, fNIRS COR p = 0.011) in MMD. These differences reflected the impaired transient memory and executive function in MMD patients. This study contributes to the understanding of the neurophysiological nature of cognitive impairment in MMD and provides a potential adjuvant early identification method for individuals with chronic cerebral ischemia.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Translational Stroke Research
Translational Stroke Research CLINICAL NEUROLOGY-NEUROSCIENCES
CiteScore
13.80
自引率
4.30%
发文量
130
审稿时长
6-12 weeks
期刊介绍: Translational Stroke Research covers basic, translational, and clinical studies. The Journal emphasizes novel approaches to help both to understand clinical phenomenon through basic science tools, and to translate basic science discoveries into the development of new strategies for the prevention, assessment, treatment, and enhancement of central nervous system repair after stroke and other forms of neurotrauma. Translational Stroke Research focuses on translational research and is relevant to both basic scientists and physicians, including but not restricted to neuroscientists, vascular biologists, neurologists, neuroimagers, and neurosurgeons.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信