Natascha Leitner, Ismi Simsek, Juraj Hlavaty, Sabine Schäfer-Somi, Ingrid Walter
{"title":"Immunohistochemical assessment of ERM proteins (ezrin, radixin, moesin) in the ovaries of different species.","authors":"Natascha Leitner, Ismi Simsek, Juraj Hlavaty, Sabine Schäfer-Somi, Ingrid Walter","doi":"10.1016/j.tice.2024.102644","DOIUrl":null,"url":null,"abstract":"<p><p>The ezrin/radixin/moesin proteins play a central role in cross-linking plasma membrane proteins with the actin cytoskeleton. Despite intensive ERM protein research in many tissues and pathologies, little is known about these proteins in healthy tissues of reproductive organs. Therefore, we examined ezrin, phosphorylated ezrin/radixin/moesin (pan-pERM), radixin, and moesin distribution at the cellular level by means of immunohistochemistry in ovaries of the following animal species: mouse, dog, cat, sheep, pig, horse, and cynomolgus monkey. Ezrin was expressed in oocytes, ovarian surface, granulosa cells and corpus luteum. A characteristic, predominantly membranous pan-pERM staining pattern was observed in ovarian surface epithelium, oocyte, granulosa cells and corpus luteum. Moesin immunoreactivity was present in all ovarian structures with a prominent signal in endothelial cells of blood vessels. Oocytes, granulosa cells and corpus luteum revealed mainly nuclear radixin staining. Staining pattern and subcellular localization (membranous, cytoplasmic, nuclear) varied between different animal species and between particular ERM proteins as well. This data may help gain new insights into the physiological function of ERM proteins in biological events in the female reproductive system.</p>","PeriodicalId":23201,"journal":{"name":"Tissue & cell","volume":"93 ","pages":"102644"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue & cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tice.2024.102644","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The ezrin/radixin/moesin proteins play a central role in cross-linking plasma membrane proteins with the actin cytoskeleton. Despite intensive ERM protein research in many tissues and pathologies, little is known about these proteins in healthy tissues of reproductive organs. Therefore, we examined ezrin, phosphorylated ezrin/radixin/moesin (pan-pERM), radixin, and moesin distribution at the cellular level by means of immunohistochemistry in ovaries of the following animal species: mouse, dog, cat, sheep, pig, horse, and cynomolgus monkey. Ezrin was expressed in oocytes, ovarian surface, granulosa cells and corpus luteum. A characteristic, predominantly membranous pan-pERM staining pattern was observed in ovarian surface epithelium, oocyte, granulosa cells and corpus luteum. Moesin immunoreactivity was present in all ovarian structures with a prominent signal in endothelial cells of blood vessels. Oocytes, granulosa cells and corpus luteum revealed mainly nuclear radixin staining. Staining pattern and subcellular localization (membranous, cytoplasmic, nuclear) varied between different animal species and between particular ERM proteins as well. This data may help gain new insights into the physiological function of ERM proteins in biological events in the female reproductive system.
期刊介绍:
Tissue and Cell is devoted to original research on the organization of cells, subcellular and extracellular components at all levels, including the grouping and interrelations of cells in tissues and organs. The journal encourages submission of ultrastructural studies that provide novel insights into structure, function and physiology of cells and tissues, in health and disease. Bioengineering and stem cells studies focused on the description of morphological and/or histological data are also welcomed.
Studies investigating the effect of compounds and/or substances on structure of cells and tissues are generally outside the scope of this journal. For consideration, studies should contain a clear rationale on the use of (a) given substance(s), have a compelling morphological and structural focus and present novel incremental findings from previous literature.