Changes in cerebral cortex redox status and cognitive performance in short- and long-term high-sucrose diet fed rats.

IF 2.4 3区 医学 Q2 BEHAVIORAL SCIENCES
María Del Rosario Ferreira, María de Los Milagros Scalzo, Silvia Rodríguez, María Eugenia D Alessandro
{"title":"Changes in cerebral cortex redox status and cognitive performance in short- and long-term high-sucrose diet fed rats.","authors":"María Del Rosario Ferreira, María de Los Milagros Scalzo, Silvia Rodríguez, María Eugenia D Alessandro","doi":"10.1016/j.physbeh.2024.114776","DOIUrl":null,"url":null,"abstract":"<p><p>Rising evidence suggests that Metabolic Syndrome (MetS) would be correlated with the development of neurodegenerative diseases. Although this has emerged as a relevant area of research, it has not been fully explored. It is not clear if a greater impairment of the metabolic peripheral environment is accompanied by a greater impairment of the central nervous system. We have previously shown that feeding rats with a high-sucrose diet (HSD) represents an animal model that resembles the human MetS phenotype. The aim of the present work was to assess in rats fed a HSD for a short (3 weeks-wk) or a long (15 weeks-wk) term, whether the worsening of the peripheral metabolic and hormonal profile that occur as the time of HSD consumption increases, is also accompanied by a worsening of oxidative stress in the cerebral cortex and/or cognitive behavior. Male Wistar rats received a HSD or a control diet during 3 wk or 15 wk. We found an increase in reactive oxygen species (ROS), thiobarbituric acid reactive substances (TBARS), advanced glycation end products (AGEs) and glutathione peroxidase (GPx) and glutathione reductase (GR) enzyme activities in the cerebral cortex of 3 wk HSD-fed rats. All of these parameters, except for the GPx, were also increased in the 15 wk HSD-fed group and values were similar to those observed at 3 wk. Glutathione reduced form (GSH), catalase (CAT) activity and brain-to-body weight ratio were reduced in 15 wk HSD-fed animals. Glutathione S- transferase (GST) was similar in all dietary groups. A poor performance in novel object recognition test and T-maze memory tasks was observed in 3 wk and 15 wk HSD-fed rats in a similar magnitude. Our results add new evidence related to the association between an adverse peripheral metabolic environment and brain/cognitive dysfunction.</p>","PeriodicalId":20201,"journal":{"name":"Physiology & Behavior","volume":" ","pages":"114776"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiology & Behavior","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.physbeh.2024.114776","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Rising evidence suggests that Metabolic Syndrome (MetS) would be correlated with the development of neurodegenerative diseases. Although this has emerged as a relevant area of research, it has not been fully explored. It is not clear if a greater impairment of the metabolic peripheral environment is accompanied by a greater impairment of the central nervous system. We have previously shown that feeding rats with a high-sucrose diet (HSD) represents an animal model that resembles the human MetS phenotype. The aim of the present work was to assess in rats fed a HSD for a short (3 weeks-wk) or a long (15 weeks-wk) term, whether the worsening of the peripheral metabolic and hormonal profile that occur as the time of HSD consumption increases, is also accompanied by a worsening of oxidative stress in the cerebral cortex and/or cognitive behavior. Male Wistar rats received a HSD or a control diet during 3 wk or 15 wk. We found an increase in reactive oxygen species (ROS), thiobarbituric acid reactive substances (TBARS), advanced glycation end products (AGEs) and glutathione peroxidase (GPx) and glutathione reductase (GR) enzyme activities in the cerebral cortex of 3 wk HSD-fed rats. All of these parameters, except for the GPx, were also increased in the 15 wk HSD-fed group and values were similar to those observed at 3 wk. Glutathione reduced form (GSH), catalase (CAT) activity and brain-to-body weight ratio were reduced in 15 wk HSD-fed animals. Glutathione S- transferase (GST) was similar in all dietary groups. A poor performance in novel object recognition test and T-maze memory tasks was observed in 3 wk and 15 wk HSD-fed rats in a similar magnitude. Our results add new evidence related to the association between an adverse peripheral metabolic environment and brain/cognitive dysfunction.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Physiology & Behavior
Physiology & Behavior 医学-行为科学
CiteScore
5.70
自引率
3.40%
发文量
274
审稿时长
47 days
期刊介绍: Physiology & Behavior is aimed at the causal physiological mechanisms of behavior and its modulation by environmental factors. The journal invites original reports in the broad area of behavioral and cognitive neuroscience, in which at least one variable is physiological and the primary emphasis and theoretical context are behavioral. The range of subjects includes behavioral neuroendocrinology, psychoneuroimmunology, learning and memory, ingestion, social behavior, and studies related to the mechanisms of psychopathology. Contemporary reviews and theoretical articles are welcomed and the Editors invite such proposals from interested authors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信