Temporal decay of similarity in bee-plant relationships throughout the day.

IF 2.3 2区 环境科学与生态学 Q2 ECOLOGY
Brenda Ratoni, Carlos Pinilla Cruz, Samuel Novais, Dulce Rodríguez-Morales, Frederico S Neves, Ricardo Ayala, Wesley Dáttilo
{"title":"Temporal decay of similarity in bee-plant relationships throughout the day.","authors":"Brenda Ratoni, Carlos Pinilla Cruz, Samuel Novais, Dulce Rodríguez-Morales, Frederico S Neves, Ricardo Ayala, Wesley Dáttilo","doi":"10.1007/s00442-024-05637-5","DOIUrl":null,"url":null,"abstract":"<p><p>Assessing plant-pollinator relationships often employs a snapshot approach to describe the complexity and dynamic involving species interactions. However, this framework overlooks the nuanced changes in species composition, their interactions, and the underlying drivers of such variations. This is particularly evident on less explored temporal scales, such as the dynamic decision-making processes occurring within hours throughout the day. To address these gaps, in this study, we evaluated the temporal and environmental factors shaping the change of species and interactions (beta diversity) between bees and plants throughout the day in a coastal environment in Mexico. In general, we found that the changes in species composition of bees and plants were mainly associated with species turnover throughout the day, while the principal component of changes in interaction composition was interaction rewiring (reassembling of pairwise bee-plant interactions). This was mainly because a few species (6 of 47 bee species, and 5 of 35 plant species) with many interactions remain permanent most of the day, leading to rewiring being the most important component of beta diversity interaction. While environmental conditions such as temperature and humidity did not significantly drive the compositional dissimilarity of species and interactions, we observed that nearby time intervals have a similar composition of species and interactions. In conclusion, our study emphasizes the importance of considering shorter temporal dynamics in understanding species interactions during the day. These insights deepen our understanding of the intricate dynamics shaping plant-pollinator interactions, providing valuable implications for future studies focused on conservation and management strategies.</p>","PeriodicalId":19473,"journal":{"name":"Oecologia","volume":"207 1","pages":"2"},"PeriodicalIF":2.3000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oecologia","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s00442-024-05637-5","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Assessing plant-pollinator relationships often employs a snapshot approach to describe the complexity and dynamic involving species interactions. However, this framework overlooks the nuanced changes in species composition, their interactions, and the underlying drivers of such variations. This is particularly evident on less explored temporal scales, such as the dynamic decision-making processes occurring within hours throughout the day. To address these gaps, in this study, we evaluated the temporal and environmental factors shaping the change of species and interactions (beta diversity) between bees and plants throughout the day in a coastal environment in Mexico. In general, we found that the changes in species composition of bees and plants were mainly associated with species turnover throughout the day, while the principal component of changes in interaction composition was interaction rewiring (reassembling of pairwise bee-plant interactions). This was mainly because a few species (6 of 47 bee species, and 5 of 35 plant species) with many interactions remain permanent most of the day, leading to rewiring being the most important component of beta diversity interaction. While environmental conditions such as temperature and humidity did not significantly drive the compositional dissimilarity of species and interactions, we observed that nearby time intervals have a similar composition of species and interactions. In conclusion, our study emphasizes the importance of considering shorter temporal dynamics in understanding species interactions during the day. These insights deepen our understanding of the intricate dynamics shaping plant-pollinator interactions, providing valuable implications for future studies focused on conservation and management strategies.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Oecologia
Oecologia 环境科学-生态学
CiteScore
5.10
自引率
0.00%
发文量
192
审稿时长
5.3 months
期刊介绍: Oecologia publishes innovative ecological research of international interest. We seek reviews, advances in methodology, and original contributions, emphasizing the following areas: Population ecology, Plant-microbe-animal interactions, Ecosystem ecology, Community ecology, Global change ecology, Conservation ecology, Behavioral ecology and Physiological Ecology. In general, studies that are purely descriptive, mathematical, documentary, and/or natural history will not be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信