The effects of developmental sub-chronic low-level lead exposure on microglia and a test of possible mitigation by apigenin in C57BL/6J young mice.

IF 2.6 3区 医学 Q3 NEUROSCIENCES
Neurotoxicology and teratology Pub Date : 2025-01-01 Epub Date: 2024-12-03 DOI:10.1016/j.ntt.2024.107406
Gisel Flores-Montoya, Zichen Tian, Ayasa Michii, Sze Ying Chan, Natalie Sanchez
{"title":"The effects of developmental sub-chronic low-level lead exposure on microglia and a test of possible mitigation by apigenin in C57BL/6J young mice.","authors":"Gisel Flores-Montoya, Zichen Tian, Ayasa Michii, Sze Ying Chan, Natalie Sanchez","doi":"10.1016/j.ntt.2024.107406","DOIUrl":null,"url":null,"abstract":"<p><p>Developmental chronic low-level lead (Pb) exposure disrupts central nervous system function and diminishes neurocognition. Microglial cell activation might contribute to these deficits. The present study evaluated the effects of developmental sub-chronic low-level lead exposure on microglial cells and the possible effectiveness of a natural anti-inflammatory intervention with apigenin to mitigate these effects. From PND 0 to 28, 87 C57BL/6 J mice were exposed to one of six treatment conditions: 0 ppm Pb; 30 ppm Pb; 430 ppm Pb; 30 ppm Pb + 400 ppm apigenin; 430 ppm Pb + 400 ppm apigenin; or 400 ppm apigenin, via dams' drinking water. Following sacrifice, brain tissue was harvested and microglial cells were labeled via immunohistochemistry and counted within the dentate gyrus (DG) using unbiased stereology methods. It was hypothesized that developmental sub-chronic low-level lead exposure would increase microglial cell numbers within the DG and that apigenin treatment may mitigate these effects. A significant effect of treatment group was found and post-hoc analyses revealed that Pb-exposure generated an increased number of microglial cells as compared to controls. Interestingly, the 30 ppm Pb with apigenin treatment group did not generate microglial cell numbers different from the control group unexposed to Pb. These results suggested that developmental sub-chronic low-level lead exposure increased microglial cell activation within the DG and that, at low-levels of Pb exposure, apigenin treatment may mitigate these effects. These results provided the groundwork for studies that could identify an effective intervention to alleviate the effects of developmental chronic low-level lead exposure in child neurocognition.</p>","PeriodicalId":19144,"journal":{"name":"Neurotoxicology and teratology","volume":" ","pages":"107406"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurotoxicology and teratology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ntt.2024.107406","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Developmental chronic low-level lead (Pb) exposure disrupts central nervous system function and diminishes neurocognition. Microglial cell activation might contribute to these deficits. The present study evaluated the effects of developmental sub-chronic low-level lead exposure on microglial cells and the possible effectiveness of a natural anti-inflammatory intervention with apigenin to mitigate these effects. From PND 0 to 28, 87 C57BL/6 J mice were exposed to one of six treatment conditions: 0 ppm Pb; 30 ppm Pb; 430 ppm Pb; 30 ppm Pb + 400 ppm apigenin; 430 ppm Pb + 400 ppm apigenin; or 400 ppm apigenin, via dams' drinking water. Following sacrifice, brain tissue was harvested and microglial cells were labeled via immunohistochemistry and counted within the dentate gyrus (DG) using unbiased stereology methods. It was hypothesized that developmental sub-chronic low-level lead exposure would increase microglial cell numbers within the DG and that apigenin treatment may mitigate these effects. A significant effect of treatment group was found and post-hoc analyses revealed that Pb-exposure generated an increased number of microglial cells as compared to controls. Interestingly, the 30 ppm Pb with apigenin treatment group did not generate microglial cell numbers different from the control group unexposed to Pb. These results suggested that developmental sub-chronic low-level lead exposure increased microglial cell activation within the DG and that, at low-levels of Pb exposure, apigenin treatment may mitigate these effects. These results provided the groundwork for studies that could identify an effective intervention to alleviate the effects of developmental chronic low-level lead exposure in child neurocognition.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.60
自引率
10.30%
发文量
48
审稿时长
58 days
期刊介绍: Neurotoxicology and Teratology provides a forum for publishing new information regarding the effects of chemical and physical agents on the developing, adult or aging nervous system. In this context, the fields of neurotoxicology and teratology include studies of agent-induced alterations of nervous system function, with a focus on behavioral outcomes and their underlying physiological and neurochemical mechanisms. The Journal publishes original, peer-reviewed Research Reports of experimental, clinical, and epidemiological studies that address the neurotoxicity and/or functional teratology of pesticides, solvents, heavy metals, nanomaterials, organometals, industrial compounds, mixtures, drugs of abuse, pharmaceuticals, animal and plant toxins, atmospheric reaction products, and physical agents such as radiation and noise. These reports include traditional mammalian neurotoxicology experiments, human studies, studies using non-mammalian animal models, and mechanistic studies in vivo or in vitro. Special Issues, Reviews, Commentaries, Meeting Reports, and Symposium Papers provide timely updates on areas that have reached a critical point of synthesis, on aspects of a scientific field undergoing rapid change, or on areas that present special methodological or interpretive problems. Theoretical Articles address concepts and potential mechanisms underlying actions of agents of interest in the nervous system. The Journal also publishes Brief Communications that concisely describe a new method, technique, apparatus, or experimental result.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信