Competing technologies: determining the geographical origin of strawberries (Fragaria × ananassa) using laboratory based near-infrared spectroscopy compared to a simple portable device.
Johannes Brockelt, Felix Schmauder, Kim Brettschneider, Marina Creydt, Stephan Seifert, Markus Fischer
{"title":"Competing technologies: determining the geographical origin of strawberries (<i>Fragaria</i> × <i>ananassa</i>) using laboratory based near-infrared spectroscopy compared to a simple portable device.","authors":"Johannes Brockelt, Felix Schmauder, Kim Brettschneider, Marina Creydt, Stephan Seifert, Markus Fischer","doi":"10.1039/d4mo00161c","DOIUrl":null,"url":null,"abstract":"<p><p>The application and development of fast and simple screening methods for the authentication of foods has increased continuously in recent years. A widely used analytical technique is Fourier transform near-infrared spectroscopy (FT-NIR). Despite the simple application of FT-NIR analysis, the analyses are usually carried out on benchtop devices in the laboratory. However small, inexpensive and mobile NIR devices could be used on-site. Despite the simple use of FT-NIR analysis, the examinations are usually carried out on a stationary benchtop device in a laboratory. However, in order to be able to perform the application directly on site, the application of small, cost-effective and mobile NIR devices for food analysis is crucial. In this study, both, a benchtop NIR instrument and a handheld NIR device with a lower resolution and analyzed wavenumber range were applied for the differentiation of strawberries from different geographical origins. Distinguishing German and non-German strawberries using linear discriminant analysis (LDA) yielded an accuracy of 91.9% and 84.0% using the benchtop and the handheld devices, respectively. Relevant variables could be assigned to lipids, carbohydrates and proteins. Overall, our study demonstrated for the first time that analyzing the geographical origin of strawberries using NIR spectroscopy is also possible by means of a handheld device.</p>","PeriodicalId":19065,"journal":{"name":"Molecular omics","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular omics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1039/d4mo00161c","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The application and development of fast and simple screening methods for the authentication of foods has increased continuously in recent years. A widely used analytical technique is Fourier transform near-infrared spectroscopy (FT-NIR). Despite the simple application of FT-NIR analysis, the analyses are usually carried out on benchtop devices in the laboratory. However small, inexpensive and mobile NIR devices could be used on-site. Despite the simple use of FT-NIR analysis, the examinations are usually carried out on a stationary benchtop device in a laboratory. However, in order to be able to perform the application directly on site, the application of small, cost-effective and mobile NIR devices for food analysis is crucial. In this study, both, a benchtop NIR instrument and a handheld NIR device with a lower resolution and analyzed wavenumber range were applied for the differentiation of strawberries from different geographical origins. Distinguishing German and non-German strawberries using linear discriminant analysis (LDA) yielded an accuracy of 91.9% and 84.0% using the benchtop and the handheld devices, respectively. Relevant variables could be assigned to lipids, carbohydrates and proteins. Overall, our study demonstrated for the first time that analyzing the geographical origin of strawberries using NIR spectroscopy is also possible by means of a handheld device.
Molecular omicsBiochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
5.40
自引率
3.40%
发文量
91
期刊介绍:
Molecular Omics publishes high-quality research from across the -omics sciences.
Topics include, but are not limited to:
-omics studies to gain mechanistic insight into biological processes – for example, determining the mode of action of a drug or the basis of a particular phenotype, such as drought tolerance
-omics studies for clinical applications with validation, such as finding biomarkers for diagnostics or potential new drug targets
-omics studies looking at the sub-cellular make-up of cells – for example, the subcellular localisation of certain proteins or post-translational modifications or new imaging techniques
-studies presenting new methods and tools to support omics studies, including new spectroscopic/chromatographic techniques, chip-based/array technologies and new classification/data analysis techniques. New methods should be proven and demonstrate an advance in the field.
Molecular Omics only accepts articles of high importance and interest that provide significant new insight into important chemical or biological problems. This could be fundamental research that significantly increases understanding or research that demonstrates clear functional benefits.
Papers reporting new results that could be routinely predicted, do not show a significant improvement over known research, or are of interest only to the specialist in the area are not suitable for publication in Molecular Omics.