Predicting the seasonal dynamics of Dalbulus maidis (Hemiptera: Cicadellidae) in corn using artificial neural networks.

IF 1.4 3区 农林科学 Q2 ENTOMOLOGY
Daiane das Graças do Carmo, Jhersyka da Silva Paes, Abraão Almeida Santos, Juliana Lopes Dos Santos, Marcelo Coutinho Picanço Filho, Juliana Magalhães Soares, Renato de Almeida Sarmento, Marcelo Coutinho Picanço
{"title":"Predicting the seasonal dynamics of Dalbulus maidis (Hemiptera: Cicadellidae) in corn using artificial neural networks.","authors":"Daiane das Graças do Carmo, Jhersyka da Silva Paes, Abraão Almeida Santos, Juliana Lopes Dos Santos, Marcelo Coutinho Picanço Filho, Juliana Magalhães Soares, Renato de Almeida Sarmento, Marcelo Coutinho Picanço","doi":"10.1007/s13744-024-01212-y","DOIUrl":null,"url":null,"abstract":"<p><p>This study addresses the challenge of predicting Dalbulus maidis (DeLong & Wolcott) (Hemiptera: Cicadellidae) density in cornfields by developing an artificial neural network (ANN). Over two years, we collected data on meteorological variables (atmospheric pressure, air temperature, dew point, rainfall, relative humidity, solar irradiance, and wind speed), plant age, and density of D. maidis in cornfields located in two Brazilian biomes (Atlantic Forest and Brazilian Tropical Savannah). Out of 1056 ANNs tested, the neural network featuring a 30-day time lag, six neurons, logistic activation, and resilient propagation demonstrated the lowest root mean squared error (0.057) and a high correlation (0.919) with observed D. maidis densities. This ANN exhibited an goodness of fit in low-density (Atlantic Forest) and high-density (Brazilian Tropical Savannah) scenarios for D. maidis. Critical factors influencing D. maidis seasonal dynamics, including corn plant age, rainfall, average air temperature, and relative humidity, were identified. This study highlights the potential of the ANN as a promising tool for precise predictions of pest seasonal dynamics, positioning it as a valuable asset for integrated pest management programs targeting D. maidis.</p>","PeriodicalId":19071,"journal":{"name":"Neotropical Entomology","volume":"54 1","pages":"1"},"PeriodicalIF":1.4000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neotropical Entomology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s13744-024-01212-y","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study addresses the challenge of predicting Dalbulus maidis (DeLong & Wolcott) (Hemiptera: Cicadellidae) density in cornfields by developing an artificial neural network (ANN). Over two years, we collected data on meteorological variables (atmospheric pressure, air temperature, dew point, rainfall, relative humidity, solar irradiance, and wind speed), plant age, and density of D. maidis in cornfields located in two Brazilian biomes (Atlantic Forest and Brazilian Tropical Savannah). Out of 1056 ANNs tested, the neural network featuring a 30-day time lag, six neurons, logistic activation, and resilient propagation demonstrated the lowest root mean squared error (0.057) and a high correlation (0.919) with observed D. maidis densities. This ANN exhibited an goodness of fit in low-density (Atlantic Forest) and high-density (Brazilian Tropical Savannah) scenarios for D. maidis. Critical factors influencing D. maidis seasonal dynamics, including corn plant age, rainfall, average air temperature, and relative humidity, were identified. This study highlights the potential of the ANN as a promising tool for precise predictions of pest seasonal dynamics, positioning it as a valuable asset for integrated pest management programs targeting D. maidis.

应用人工神经网络预测玉米小飞蛾(半翅目:蝉科)的季节动态。
本研究通过建立人工神经网络(ANN)来解决玉米田小飞蛾(DeLong & Wolcott)(半翅目:蝉科)密度预测的挑战。在两年多的时间里,我们收集了位于巴西两个生物群落(大西洋森林和巴西热带大草原)的玉米田的气象变量(大气压、气温、露点、降雨量、相对湿度、太阳辐照度和风速)、植物年龄和maidi密度的数据。在测试的1056个人工神经网络中,具有30天时间滞后、6个神经元、逻辑激活和弹性传播的神经网络表现出最低的均方根误差(0.057)和与观察到的野田鼠密度的高相关性(0.919)。该人工神经网络在低密度(大西洋森林)和高密度(巴西热带大草原)情景下均表现出良好的拟合性。确定了玉米株龄、降雨量、平均气温和相对湿度等影响玉米螟季节动态的关键因素。这项研究强调了人工神经网络作为害虫季节动态精确预测工具的潜力,将其定位为针对小蠹蛾的综合害虫管理计划的宝贵资产。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neotropical Entomology
Neotropical Entomology 生物-昆虫学
CiteScore
3.30
自引率
5.60%
发文量
69
审稿时长
6-12 weeks
期刊介绍: Neotropical Entomology is a bimonthly journal, edited by the Sociedade Entomológica do Brasil (Entomological Society of Brazil) that publishes original articles produced by Brazilian and international experts in several subspecialties of entomology. These include bionomics, systematics, morphology, physiology, behavior, ecology, biological control, crop protection and acarology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信