Human DBR1 deficiency impairs stress granule-dependent PKR antiviral immunity.

IF 12.6 1区 医学 Q1 IMMUNOLOGY
Journal of Experimental Medicine Pub Date : 2025-01-06 Epub Date: 2024-12-05 DOI:10.1084/jem.20240010
Shuo Ru, Sisi Tang, Hui Xu, Jiahao Yin, Yan Guo, Liuping Song, Zhenyu Jin, Danyel Lee, Yi-Hao Chan, Xingyao Chen, Luke Buerer, William Fairbrother, Weidong Jia, Jean-Laurent Casanova, Shen-Ying Zhang, Daxing Gao
{"title":"Human DBR1 deficiency impairs stress granule-dependent PKR antiviral immunity.","authors":"Shuo Ru, Sisi Tang, Hui Xu, Jiahao Yin, Yan Guo, Liuping Song, Zhenyu Jin, Danyel Lee, Yi-Hao Chan, Xingyao Chen, Luke Buerer, William Fairbrother, Weidong Jia, Jean-Laurent Casanova, Shen-Ying Zhang, Daxing Gao","doi":"10.1084/jem.20240010","DOIUrl":null,"url":null,"abstract":"<p><p>The molecular mechanism by which inborn errors of the human RNA lariat-debranching enzyme 1 (DBR1) underlie brainstem viral encephalitis is unknown. We show here that the accumulation of RNA lariats in human DBR1-deficient cells interferes with stress granule (SG) assembly, promoting the proteasome degradation of at least G3BP1 and G3BP2, two key components of SGs. In turn, impaired assembly of SGs, which normally recruit PKR, impairs PKR activation and activity against viruses, including HSV-1. Remarkably, the genetic ablation of PKR abolishes the corresponding antiviral effect of DBR1 in vitro. We also show that Dbr1Y17H/Y17H mice are susceptible to similar viral infections in vivo. Moreover, cells and brain samples from Dbr1Y17H/Y17H mice exhibit decreased G3BP1/2 expression and PKR phosphorylation. Thus, the debranching of RNA lariats by DBR1 permits G3BP1/2- and SG assembly-mediated PKR activation and cell-intrinsic antiviral immunity in mice and humans. DBR1-deficient patients are prone to viral disease because of intracellular lariat accumulation, which impairs G3BP1/2- and SG assembly-dependent PKR activation.</p>","PeriodicalId":15760,"journal":{"name":"Journal of Experimental Medicine","volume":"222 1","pages":""},"PeriodicalIF":12.6000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11619777/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1084/jem.20240010","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The molecular mechanism by which inborn errors of the human RNA lariat-debranching enzyme 1 (DBR1) underlie brainstem viral encephalitis is unknown. We show here that the accumulation of RNA lariats in human DBR1-deficient cells interferes with stress granule (SG) assembly, promoting the proteasome degradation of at least G3BP1 and G3BP2, two key components of SGs. In turn, impaired assembly of SGs, which normally recruit PKR, impairs PKR activation and activity against viruses, including HSV-1. Remarkably, the genetic ablation of PKR abolishes the corresponding antiviral effect of DBR1 in vitro. We also show that Dbr1Y17H/Y17H mice are susceptible to similar viral infections in vivo. Moreover, cells and brain samples from Dbr1Y17H/Y17H mice exhibit decreased G3BP1/2 expression and PKR phosphorylation. Thus, the debranching of RNA lariats by DBR1 permits G3BP1/2- and SG assembly-mediated PKR activation and cell-intrinsic antiviral immunity in mice and humans. DBR1-deficient patients are prone to viral disease because of intracellular lariat accumulation, which impairs G3BP1/2- and SG assembly-dependent PKR activation.

人类DBR1缺乏损害应激颗粒依赖性PKR抗病毒免疫。
脑干病毒性脑炎的分子机制尚不清楚人类RNA larilaridebranches enzyme 1 (DBR1)的先天错误。我们在这里表明,RNA变体在人dbr1缺陷细胞中的积累干扰了应激颗粒(SG)的组装,促进了至少G3BP1和G3BP2的蛋白酶体降解,G3BP2是SGs的两个关键成分。反过来,通常招募PKR的SGs的组装受损,会损害PKR的激活和对病毒的活性,包括HSV-1。值得注意的是,PKR的基因消融在体外消除了DBR1相应的抗病毒作用。我们还发现Dbr1Y17H/Y17H小鼠在体内易受类似病毒感染。此外,Dbr1Y17H/Y17H小鼠的细胞和脑样本显示G3BP1/2表达和PKR磷酸化降低。因此,在小鼠和人类中,DBR1对RNA分支的脱支允许G3BP1/2-和SG组装介导的PKR激活和细胞内在抗病毒免疫。dbr1缺陷患者容易发生病毒性疾病,因为细胞内的幼虫积累会损害G3BP1/2-和SG组装依赖的PKR激活。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
1.30%
发文量
189
审稿时长
3-8 weeks
期刊介绍: Since its establishment in 1896, the Journal of Experimental Medicine (JEM) has steadfastly pursued the publication of enduring and exceptional studies in medical biology. In an era where numerous publishing groups are introducing specialized journals, we recognize the importance of offering a distinguished platform for studies that seamlessly integrate various disciplines within the pathogenesis field. Our unique editorial system, driven by a commitment to exceptional author service, involves two collaborative groups of editors: professional editors with robust scientific backgrounds and full-time practicing scientists. Each paper undergoes evaluation by at least one editor from both groups before external review. Weekly editorial meetings facilitate comprehensive discussions on papers, incorporating external referee comments, and ensure swift decisions without unnecessary demands for extensive revisions. Encompassing human studies and diverse in vivo experimental models of human disease, our focus within medical biology spans genetics, inflammation, immunity, infectious disease, cancer, vascular biology, metabolic disorders, neuroscience, and stem cell biology. We eagerly welcome reports ranging from atomic-level analyses to clinical interventions that unveil new mechanistic insights.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信