Efficient production of RNA in Saccharomyces cerevisiae through inducing high level transcription of functional ncRNA-SRG1.

IF 4.1 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Can Guo, Zhiqiang Bin, Pengjie Zhang, Jing Tang, Lianqing Wang, Yefu Chen, Dongguang Xiao, Xuewu Guo
{"title":"Efficient production of RNA in Saccharomyces cerevisiae through inducing high level transcription of functional ncRNA-SRG1.","authors":"Can Guo, Zhiqiang Bin, Pengjie Zhang, Jing Tang, Lianqing Wang, Yefu Chen, Dongguang Xiao, Xuewu Guo","doi":"10.1016/j.jbiotec.2024.11.021","DOIUrl":null,"url":null,"abstract":"<p><p>RNA (Ribonucleic Acid) is an essential component of organisms and is widely used in the food and pharmaceutical industries. Saccharomyces cerevisiae, recognized as a safe strain, is widely used for RNA production. In this study, the S. cerevisiae W303-1a was used as a starting strain and molecular modifications were made to the functional ncRNA-SRG1 to evaluate the effect on RNA production. At the same time, its transcriptionally associated helper genes (Spt2, Spt6 and Cha4) were overexpressed and the culture medium was supplemented with serine to induce SRG1 transcription, to increase SRG1 transcription levels and investigate its effect on intracellular RNA levels. The results showed that the intracellular RNA content of the recombinant strain W303-1a-SRG1 was 10.27 %, an increase of 11.15 % compared to the starting strain (W303-1a, with an intracellular RNA content of 9.24 %). On this basis, a gene co-overexpression strain-W303-1a-SRG1-Spt6 was constructed. Simultaneously, the addition of 2 % serine strategy was used to increase the transcription level of SRG1 and RNA content of the recombinant strain. The intracellular RNA of the recombinant strain reached 11.41 %, an increase of 23.38 % compared to the starting strain (W303-1a, without serine supplementation). In addition, the growth performance of the strain was assessed by measuring the SRG1 transcription level in the strain and plotting the growth curve. Therefore, we found that improving the transcription level of ncRNA can be used as a new idea to construct S. cerevisiae with high RNA content, which provides a strong help for subsequent research in related fields. This work provides a new strategy for increasing the nucleic acid content of S. cerevisiae.</p>","PeriodicalId":15153,"journal":{"name":"Journal of biotechnology","volume":" ","pages":"66-75"},"PeriodicalIF":4.1000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.jbiotec.2024.11.021","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

RNA (Ribonucleic Acid) is an essential component of organisms and is widely used in the food and pharmaceutical industries. Saccharomyces cerevisiae, recognized as a safe strain, is widely used for RNA production. In this study, the S. cerevisiae W303-1a was used as a starting strain and molecular modifications were made to the functional ncRNA-SRG1 to evaluate the effect on RNA production. At the same time, its transcriptionally associated helper genes (Spt2, Spt6 and Cha4) were overexpressed and the culture medium was supplemented with serine to induce SRG1 transcription, to increase SRG1 transcription levels and investigate its effect on intracellular RNA levels. The results showed that the intracellular RNA content of the recombinant strain W303-1a-SRG1 was 10.27 %, an increase of 11.15 % compared to the starting strain (W303-1a, with an intracellular RNA content of 9.24 %). On this basis, a gene co-overexpression strain-W303-1a-SRG1-Spt6 was constructed. Simultaneously, the addition of 2 % serine strategy was used to increase the transcription level of SRG1 and RNA content of the recombinant strain. The intracellular RNA of the recombinant strain reached 11.41 %, an increase of 23.38 % compared to the starting strain (W303-1a, without serine supplementation). In addition, the growth performance of the strain was assessed by measuring the SRG1 transcription level in the strain and plotting the growth curve. Therefore, we found that improving the transcription level of ncRNA can be used as a new idea to construct S. cerevisiae with high RNA content, which provides a strong help for subsequent research in related fields. This work provides a new strategy for increasing the nucleic acid content of S. cerevisiae.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of biotechnology
Journal of biotechnology 工程技术-生物工程与应用微生物
CiteScore
8.90
自引率
2.40%
发文量
190
审稿时长
45 days
期刊介绍: The Journal of Biotechnology has an open access mirror journal, the Journal of Biotechnology: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. The Journal provides a medium for the rapid publication of both full-length articles and short communications on novel and innovative aspects of biotechnology. The Journal will accept papers ranging from genetic or molecular biological positions to those covering biochemical, chemical or bioprocess engineering aspects as well as computer application of new software concepts, provided that in each case the material is directly relevant to biotechnological systems. Papers presenting information of a multidisciplinary nature that would not be suitable for publication in a journal devoted to a single discipline, are particularly welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信