Bacterial microcompartment utilization in the human commensal Escherichia coli Nissle 1917.

IF 2.7 3区 生物学 Q3 MICROBIOLOGY
Journal of Bacteriology Pub Date : 2024-12-19 Epub Date: 2024-12-05 DOI:10.1128/jb.00269-24
Chania Clare, Jack W Rutter, Alex J H Fedorec, Stefanie Frank, Chris P Barnes
{"title":"Bacterial microcompartment utilization in the human commensal <i>Escherichia coli</i> Nissle 1917.","authors":"Chania Clare, Jack W Rutter, Alex J H Fedorec, Stefanie Frank, Chris P Barnes","doi":"10.1128/jb.00269-24","DOIUrl":null,"url":null,"abstract":"<p><p>Bacterial microcompartments (BMCs) are self-assembled protein structures often utilized by bacteria as a modular metabolic unit, enabling the catalysis and utilization of less common carbon and nitrogen sources within a self-contained compartment. The <i>ethanolamine (EA) utilization (eut)</i> BMC has been widely demonstrated in enteropathogens, such as <i>Salmonella enterica</i>, and current research is exploring its activity in the commensal species that populate the human gut. <i>Escherichia coli</i> Nissle 1917 (EcN) is a strong colonizer and probiotic in gut microbial communities and has been used extensively for microbiome engineering. In this study, the utilization of ethanolamine as a sole carbon source and the formation of the <i>eut</i> BMC in EcN were demonstrated through growth assays and visualization with transmission electron microscopy. Subsequently, flux balance analysis was used to further investigate the metabolic activity of this pathway. It was found that not only is the utilization of the <i>eut</i> BMC for the degradation of EA as a carbon source in EcN comparable with that of <i>Salmonella enterica</i> but also that ammonium is released into solution as a byproduct in EcN but not in <i>S. enterica</i>. Control of EA-dependent growth was demonstrated using different concentrations of the operon inducer, vitamin B<sub>12</sub>. We show that vitamin B<sub>12</sub>-dependent EA utilization as the sole carbon source enables growth in EcN, and demonstrate the concurrent formation of the BMC shell and inducible control of the <i>eut</i> operon.</p><p><strong>Importance: </strong>The human gut is a complex environment of different bacterial species, nutrient sources, and changing conditions that are essential for human health. An imbalance can allow for the emergence of opportunistic pathogens. Bacterial microcompartments (BMCs) are utilized by bacteria to metabolize less common nutrients, conferring a growth advantage. Although widely studied in enteropathogens, there is limited research on BMC activity in commensal species. We demonstrate the formation of the eut BMC and utilization of ethanolamine as a carbon source in the human gut commensal <i>Escherichia coli</i> Nissle 1917 (EcN). Additionally, we found increased ammonium production when EcN utilized ethanolamine but did not see the same in <i>Salmonella enterica</i>, highlighting potential differences in how these species affect the wider microbial community.</p>","PeriodicalId":15107,"journal":{"name":"Journal of Bacteriology","volume":" ","pages":"e0026924"},"PeriodicalIF":2.7000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bacteriology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/jb.00269-24","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/5 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Bacterial microcompartments (BMCs) are self-assembled protein structures often utilized by bacteria as a modular metabolic unit, enabling the catalysis and utilization of less common carbon and nitrogen sources within a self-contained compartment. The ethanolamine (EA) utilization (eut) BMC has been widely demonstrated in enteropathogens, such as Salmonella enterica, and current research is exploring its activity in the commensal species that populate the human gut. Escherichia coli Nissle 1917 (EcN) is a strong colonizer and probiotic in gut microbial communities and has been used extensively for microbiome engineering. In this study, the utilization of ethanolamine as a sole carbon source and the formation of the eut BMC in EcN were demonstrated through growth assays and visualization with transmission electron microscopy. Subsequently, flux balance analysis was used to further investigate the metabolic activity of this pathway. It was found that not only is the utilization of the eut BMC for the degradation of EA as a carbon source in EcN comparable with that of Salmonella enterica but also that ammonium is released into solution as a byproduct in EcN but not in S. enterica. Control of EA-dependent growth was demonstrated using different concentrations of the operon inducer, vitamin B12. We show that vitamin B12-dependent EA utilization as the sole carbon source enables growth in EcN, and demonstrate the concurrent formation of the BMC shell and inducible control of the eut operon.

Importance: The human gut is a complex environment of different bacterial species, nutrient sources, and changing conditions that are essential for human health. An imbalance can allow for the emergence of opportunistic pathogens. Bacterial microcompartments (BMCs) are utilized by bacteria to metabolize less common nutrients, conferring a growth advantage. Although widely studied in enteropathogens, there is limited research on BMC activity in commensal species. We demonstrate the formation of the eut BMC and utilization of ethanolamine as a carbon source in the human gut commensal Escherichia coli Nissle 1917 (EcN). Additionally, we found increased ammonium production when EcN utilized ethanolamine but did not see the same in Salmonella enterica, highlighting potential differences in how these species affect the wider microbial community.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Bacteriology
Journal of Bacteriology 生物-微生物学
CiteScore
6.10
自引率
9.40%
发文量
324
审稿时长
1.3 months
期刊介绍: The Journal of Bacteriology (JB) publishes research articles that probe fundamental processes in bacteria, archaea and their viruses, and the molecular mechanisms by which they interact with each other and with their hosts and their environments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信