Saikosaponin D suppresses esophageal squamous cell carcinoma via the PI3K-AKT signaling pathway.

IF 3.1 4区 医学 Q2 PHARMACOLOGY & PHARMACY
Qiong Duan, Mingxiao Wang, Zhenting Cui, Jianxin Ma
{"title":"Saikosaponin D suppresses esophageal squamous cell carcinoma via the PI3K-AKT signaling pathway.","authors":"Qiong Duan, Mingxiao Wang, Zhenting Cui, Jianxin Ma","doi":"10.1007/s00210-024-03676-6","DOIUrl":null,"url":null,"abstract":"<p><p>Saikosaponin D is the saikosaponin with the highest biological activity in Bupleurum chinense DC, which has anti-tumor effects on a variety of human tumors. In this study, we aimed to explore the SSD-induced apoptosis mechanism in ESCC cells. We predicted the targets of SSD and ESCC through several databases and analyzed the intersecting targets to identify the connections and possible pathways between proteins. We evaluated the binding activity between proteins and SSD through molecular docking. Based on the network pharmacology results, different concentrations of SSD were used to treat Eca-109 alongside Te-10 cells. The CCK-8, colony formation, wound healing, transwell, apoptosis, and western blot assays were performed to verify the inhibitory SSD impact on Eca-109 and Te-10 cells. Network pharmacology predicted 186 potential targets of SSD, and 500 targets of ESCC, along with 31 common targets, 5 core protein targets, and 94 potential pathways. Depending on molecular docking findings, SSD was closely bound to five core targets. Cellular experiments showed that SSD suppressed the Eca-109 and Te-10 cell proliferation and metastasis and enhanced apoptosis via the PI3K-AKT signaling. This study suggests SSD inhibited Eca-109 and Te-10 cell proliferation and migration by inhibiting the PI3K-AKT pathway and promoting apoptosis.</p>","PeriodicalId":18876,"journal":{"name":"Naunyn-Schmiedeberg's archives of pharmacology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Naunyn-Schmiedeberg's archives of pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00210-024-03676-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Saikosaponin D is the saikosaponin with the highest biological activity in Bupleurum chinense DC, which has anti-tumor effects on a variety of human tumors. In this study, we aimed to explore the SSD-induced apoptosis mechanism in ESCC cells. We predicted the targets of SSD and ESCC through several databases and analyzed the intersecting targets to identify the connections and possible pathways between proteins. We evaluated the binding activity between proteins and SSD through molecular docking. Based on the network pharmacology results, different concentrations of SSD were used to treat Eca-109 alongside Te-10 cells. The CCK-8, colony formation, wound healing, transwell, apoptosis, and western blot assays were performed to verify the inhibitory SSD impact on Eca-109 and Te-10 cells. Network pharmacology predicted 186 potential targets of SSD, and 500 targets of ESCC, along with 31 common targets, 5 core protein targets, and 94 potential pathways. Depending on molecular docking findings, SSD was closely bound to five core targets. Cellular experiments showed that SSD suppressed the Eca-109 and Te-10 cell proliferation and metastasis and enhanced apoptosis via the PI3K-AKT signaling. This study suggests SSD inhibited Eca-109 and Te-10 cell proliferation and migration by inhibiting the PI3K-AKT pathway and promoting apoptosis.

柴草皂苷D通过PI3K-AKT信号通路抑制食管鳞癌。
柴胡皂苷D是柴胡中生物活性最高的柴胡皂苷,对人体多种肿瘤具有抗肿瘤作用。本研究旨在探讨ssd诱导ESCC细胞凋亡的机制。我们通过多个数据库预测了SSD和ESCC的靶点,并分析了交叉靶点,以确定蛋白质之间的联系和可能的途径。我们通过分子对接来评估蛋白质与SSD的结合活性。基于网络药理学结果,采用不同浓度的SSD与Te-10细胞一起作用于Eca-109。通过CCK-8、菌落形成、创面愈合、transwell、细胞凋亡和western blot检测来验证SSD对Eca-109和Te-10细胞的抑制作用。网络药理学预测SSD的潜在靶点186个,ESCC的潜在靶点500个,共同靶点31个,核心蛋白靶点5个,潜在通路94条。根据分子对接发现,SSD与5个核心靶点紧密结合。细胞实验表明,SSD通过PI3K-AKT信号通路抑制Eca-109和Te-10细胞的增殖和转移,促进细胞凋亡。本研究提示SSD通过抑制PI3K-AKT通路,促进细胞凋亡,从而抑制Eca-109和Te-10细胞的增殖和迁移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
5.60%
发文量
142
审稿时长
4-8 weeks
期刊介绍: Naunyn-Schmiedeberg''s Archives of Pharmacology was founded in 1873 by B. Naunyn, O. Schmiedeberg and E. Klebs as Archiv für experimentelle Pathologie und Pharmakologie, is the offical journal of the German Society of Experimental and Clinical Pharmacology and Toxicology (Deutsche Gesellschaft für experimentelle und klinische Pharmakologie und Toxikologie, DGPT) and the Sphingolipid Club. The journal publishes invited reviews, original articles, short communications and meeting reports and appears monthly. Naunyn-Schmiedeberg''s Archives of Pharmacology welcomes manuscripts for consideration of publication that report new and significant information on drug action and toxicity of chemical compounds. Thus, its scope covers all fields of experimental and clinical pharmacology as well as toxicology and includes studies in the fields of neuropharmacology and cardiovascular pharmacology as well as those describing drug actions at the cellular, biochemical and molecular levels. Moreover, submission of clinical trials with healthy volunteers or patients is encouraged. Short communications provide a means for rapid publication of significant findings of current interest that represent a conceptual advance in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信