Qiong Duan, Mingxiao Wang, Zhenting Cui, Jianxin Ma
{"title":"Saikosaponin D suppresses esophageal squamous cell carcinoma via the PI3K-AKT signaling pathway.","authors":"Qiong Duan, Mingxiao Wang, Zhenting Cui, Jianxin Ma","doi":"10.1007/s00210-024-03676-6","DOIUrl":null,"url":null,"abstract":"<p><p>Saikosaponin D is the saikosaponin with the highest biological activity in Bupleurum chinense DC, which has anti-tumor effects on a variety of human tumors. In this study, we aimed to explore the SSD-induced apoptosis mechanism in ESCC cells. We predicted the targets of SSD and ESCC through several databases and analyzed the intersecting targets to identify the connections and possible pathways between proteins. We evaluated the binding activity between proteins and SSD through molecular docking. Based on the network pharmacology results, different concentrations of SSD were used to treat Eca-109 alongside Te-10 cells. The CCK-8, colony formation, wound healing, transwell, apoptosis, and western blot assays were performed to verify the inhibitory SSD impact on Eca-109 and Te-10 cells. Network pharmacology predicted 186 potential targets of SSD, and 500 targets of ESCC, along with 31 common targets, 5 core protein targets, and 94 potential pathways. Depending on molecular docking findings, SSD was closely bound to five core targets. Cellular experiments showed that SSD suppressed the Eca-109 and Te-10 cell proliferation and metastasis and enhanced apoptosis via the PI3K-AKT signaling. This study suggests SSD inhibited Eca-109 and Te-10 cell proliferation and migration by inhibiting the PI3K-AKT pathway and promoting apoptosis.</p>","PeriodicalId":18876,"journal":{"name":"Naunyn-Schmiedeberg's archives of pharmacology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Naunyn-Schmiedeberg's archives of pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00210-024-03676-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Saikosaponin D is the saikosaponin with the highest biological activity in Bupleurum chinense DC, which has anti-tumor effects on a variety of human tumors. In this study, we aimed to explore the SSD-induced apoptosis mechanism in ESCC cells. We predicted the targets of SSD and ESCC through several databases and analyzed the intersecting targets to identify the connections and possible pathways between proteins. We evaluated the binding activity between proteins and SSD through molecular docking. Based on the network pharmacology results, different concentrations of SSD were used to treat Eca-109 alongside Te-10 cells. The CCK-8, colony formation, wound healing, transwell, apoptosis, and western blot assays were performed to verify the inhibitory SSD impact on Eca-109 and Te-10 cells. Network pharmacology predicted 186 potential targets of SSD, and 500 targets of ESCC, along with 31 common targets, 5 core protein targets, and 94 potential pathways. Depending on molecular docking findings, SSD was closely bound to five core targets. Cellular experiments showed that SSD suppressed the Eca-109 and Te-10 cell proliferation and metastasis and enhanced apoptosis via the PI3K-AKT signaling. This study suggests SSD inhibited Eca-109 and Te-10 cell proliferation and migration by inhibiting the PI3K-AKT pathway and promoting apoptosis.
期刊介绍:
Naunyn-Schmiedeberg''s Archives of Pharmacology was founded in 1873 by B. Naunyn, O. Schmiedeberg and E. Klebs as Archiv für experimentelle Pathologie und Pharmakologie, is the offical journal of the German Society of Experimental and Clinical Pharmacology and Toxicology (Deutsche Gesellschaft für experimentelle und klinische Pharmakologie und Toxikologie, DGPT) and the Sphingolipid Club. The journal publishes invited reviews, original articles, short communications and meeting reports and appears monthly. Naunyn-Schmiedeberg''s Archives of Pharmacology welcomes manuscripts for consideration of publication that report new and significant information on drug action and toxicity of chemical compounds. Thus, its scope covers all fields of experimental and clinical pharmacology as well as toxicology and includes studies in the fields of neuropharmacology and cardiovascular pharmacology as well as those describing drug actions at the cellular, biochemical and molecular levels. Moreover, submission of clinical trials with healthy volunteers or patients is encouraged. Short communications provide a means for rapid publication of significant findings of current interest that represent a conceptual advance in the field.