MusicARLtrans Net: a multimodal agent interactive music education system driven via reinforcement learning.

IF 2.6 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Frontiers in Neurorobotics Pub Date : 2024-11-21 eCollection Date: 2024-01-01 DOI:10.3389/fnbot.2024.1479694
Jie Chang, Zhenmeng Wang, Chao Yan
{"title":"MusicARLtrans Net: a multimodal agent interactive music education system driven via reinforcement learning.","authors":"Jie Chang, Zhenmeng Wang, Chao Yan","doi":"10.3389/fnbot.2024.1479694","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>In recent years, with the rapid development of artificial intelligence technology, the field of music education has begun to explore new teaching models. Traditional music education research methods have primarily focused on single-modal studies such as note recognition and instrument performance techniques, often overlooking the importance of multimodal data integration and interactive teaching. Existing methods often struggle with handling multimodal data effectively, unable to fully utilize visual, auditory, and textual information for comprehensive analysis, which limits the effectiveness of teaching.</p><p><strong>Methods: </strong>To address these challenges, this project introduces MusicARLtrans Net, a multimodal interactive music education agent system driven by reinforcement learning. The system integrates Speech-to-Text (STT) technology to achieve accurate transcription of user voice commands, utilizes the ALBEF (Align Before Fuse) model for aligning and integrating multimodal data, and applies reinforcement learning to optimize teaching strategies.</p><p><strong>Results and discussion: </strong>This approach provides a personalized and real-time feedback interactive learning experience by effectively combining auditory, visual, and textual information. The system collects and annotates multimodal data related to music education, trains and integrates various modules, and ultimately delivers an efficient and intelligent music education agent. Experimental results demonstrate that MusicARLtrans Net significantly outperforms traditional methods, achieving an accuracy of <b>96.77%</b> on the LibriSpeech dataset and <b>97.55%</b> on the MS COCO dataset, with marked improvements in recall, F1 score, and AUC metrics. These results highlight the system's superiority in speech recognition accuracy, multimodal data understanding, and teaching strategy optimization, which together lead to enhanced learning outcomes and user satisfaction. The findings hold substantial academic and practical significance, demonstrating the potential of advanced AI-driven systems in revolutionizing music education.</p>","PeriodicalId":12628,"journal":{"name":"Frontiers in Neurorobotics","volume":"18 ","pages":"1479694"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11617572/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neurorobotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3389/fnbot.2024.1479694","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: In recent years, with the rapid development of artificial intelligence technology, the field of music education has begun to explore new teaching models. Traditional music education research methods have primarily focused on single-modal studies such as note recognition and instrument performance techniques, often overlooking the importance of multimodal data integration and interactive teaching. Existing methods often struggle with handling multimodal data effectively, unable to fully utilize visual, auditory, and textual information for comprehensive analysis, which limits the effectiveness of teaching.

Methods: To address these challenges, this project introduces MusicARLtrans Net, a multimodal interactive music education agent system driven by reinforcement learning. The system integrates Speech-to-Text (STT) technology to achieve accurate transcription of user voice commands, utilizes the ALBEF (Align Before Fuse) model for aligning and integrating multimodal data, and applies reinforcement learning to optimize teaching strategies.

Results and discussion: This approach provides a personalized and real-time feedback interactive learning experience by effectively combining auditory, visual, and textual information. The system collects and annotates multimodal data related to music education, trains and integrates various modules, and ultimately delivers an efficient and intelligent music education agent. Experimental results demonstrate that MusicARLtrans Net significantly outperforms traditional methods, achieving an accuracy of 96.77% on the LibriSpeech dataset and 97.55% on the MS COCO dataset, with marked improvements in recall, F1 score, and AUC metrics. These results highlight the system's superiority in speech recognition accuracy, multimodal data understanding, and teaching strategy optimization, which together lead to enhanced learning outcomes and user satisfaction. The findings hold substantial academic and practical significance, demonstrating the potential of advanced AI-driven systems in revolutionizing music education.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Neurorobotics
Frontiers in Neurorobotics COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCER-ROBOTICS
CiteScore
5.20
自引率
6.50%
发文量
250
审稿时长
14 weeks
期刊介绍: Frontiers in Neurorobotics publishes rigorously peer-reviewed research in the science and technology of embodied autonomous neural systems. Specialty Chief Editors Alois C. Knoll and Florian Röhrbein at the Technische Universität München are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide. Neural systems include brain-inspired algorithms (e.g. connectionist networks), computational models of biological neural networks (e.g. artificial spiking neural nets, large-scale simulations of neural microcircuits) and actual biological systems (e.g. in vivo and in vitro neural nets). The focus of the journal is the embodiment of such neural systems in artificial software and hardware devices, machines, robots or any other form of physical actuation. This also includes prosthetic devices, brain machine interfaces, wearable systems, micro-machines, furniture, home appliances, as well as systems for managing micro and macro infrastructures. Frontiers in Neurorobotics also aims to publish radically new tools and methods to study plasticity and development of autonomous self-learning systems that are capable of acquiring knowledge in an open-ended manner. Models complemented with experimental studies revealing self-organizing principles of embodied neural systems are welcome. Our journal also publishes on the micro and macro engineering and mechatronics of robotic devices driven by neural systems, as well as studies on the impact that such systems will have on our daily life.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信