Extrafloral nectar from coffee-associated trees as alternative food for a predatory mite.

IF 1.8 2区 农林科学 Q2 ENTOMOLOGY
Rafael Stempniak Iasczczaki, Angelo Pallini, Madelaine Venzon, Gabriel Modesto Beghelli, Caio Binda de Assis, Italo Marcossi, Arne Janssen
{"title":"Extrafloral nectar from coffee-associated trees as alternative food for a predatory mite.","authors":"Rafael Stempniak Iasczczaki, Angelo Pallini, Madelaine Venzon, Gabriel Modesto Beghelli, Caio Binda de Assis, Italo Marcossi, Arne Janssen","doi":"10.1007/s10493-024-00967-8","DOIUrl":null,"url":null,"abstract":"<p><p>Plant diversity can enhance natural pest control in agriculture by providing resources and conditions that are not regularly available in conventional crops to natural enemies of crop pests. Extrafloral nectar-producing plants, for example, might cause reduction of pest densities on neighboring plants because the nectar can increase the performance of natural enemies. Coffee agroforestry systems often contain extrafloral-nectar-producing Inga spp. trees that serve several purposes. Recent studies suggest that they attract and arrest a diversity of natural enemies that contribute to the control of coffee pests. Mites from the Phytoseiid family are key natural enemies of coffee pest mites, but no study has investigated whether Inga extrafloral nectar increases the performance of predatory mites in coffee ecosystems. Thus, here, we assessed whether the extrafloral nectar of Inga edulis Mart. (Fabaceae) can be considered a suitable nutritional resource for the predatory mite Amblyseius herbicolus (Chant), one of the most abundant phytoseiids in coffee crops. We found that feeding on extrafloral nectar allows for development and survival, but not reproduction, of A. herbicolus. Whereas individuals that fed on a diet of nectar during their immature development could subsequently only oviposit after having fed on a pollen diet, individuals that had developed on pollen stopped ovipositing when fed nectar. Our findings suggest that interplanted Inga trees can help to conserve populations of predatory mites in crop ecosystems through the provision of nectar and may boost biological control services. Future research should investigate the effects of extrafloral nectar-producing trees on coffee pest control by these predatory mites.</p>","PeriodicalId":12088,"journal":{"name":"Experimental and Applied Acarology","volume":"94 1","pages":"2"},"PeriodicalIF":1.8000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental and Applied Acarology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10493-024-00967-8","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Plant diversity can enhance natural pest control in agriculture by providing resources and conditions that are not regularly available in conventional crops to natural enemies of crop pests. Extrafloral nectar-producing plants, for example, might cause reduction of pest densities on neighboring plants because the nectar can increase the performance of natural enemies. Coffee agroforestry systems often contain extrafloral-nectar-producing Inga spp. trees that serve several purposes. Recent studies suggest that they attract and arrest a diversity of natural enemies that contribute to the control of coffee pests. Mites from the Phytoseiid family are key natural enemies of coffee pest mites, but no study has investigated whether Inga extrafloral nectar increases the performance of predatory mites in coffee ecosystems. Thus, here, we assessed whether the extrafloral nectar of Inga edulis Mart. (Fabaceae) can be considered a suitable nutritional resource for the predatory mite Amblyseius herbicolus (Chant), one of the most abundant phytoseiids in coffee crops. We found that feeding on extrafloral nectar allows for development and survival, but not reproduction, of A. herbicolus. Whereas individuals that fed on a diet of nectar during their immature development could subsequently only oviposit after having fed on a pollen diet, individuals that had developed on pollen stopped ovipositing when fed nectar. Our findings suggest that interplanted Inga trees can help to conserve populations of predatory mites in crop ecosystems through the provision of nectar and may boost biological control services. Future research should investigate the effects of extrafloral nectar-producing trees on coffee pest control by these predatory mites.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.90
自引率
9.10%
发文量
81
审稿时长
4-8 weeks
期刊介绍: Experimental and Applied Acarology publishes peer-reviewed original papers describing advances in basic and applied research on mites and ticks. Coverage encompasses all Acari, including those of environmental, agricultural, medical and veterinary importance, and all the ways in which they interact with other organisms (plants, arthropods and other animals). The subject matter draws upon a wide variety of disciplines, including evolutionary biology, ecology, epidemiology, physiology, biochemistry, toxicology, immunology, genetics, molecular biology and pest management sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信