Choroid plexus aging: structural and vascular insights from the HCP-aging dataset.

IF 5.9 1区 医学 Q1 NEUROSCIENCES
Zhe Sun, Chenyang Li, Jiangyang Zhang, Thomas Wisniewski, Yulin Ge
{"title":"Choroid plexus aging: structural and vascular insights from the HCP-aging dataset.","authors":"Zhe Sun, Chenyang Li, Jiangyang Zhang, Thomas Wisniewski, Yulin Ge","doi":"10.1186/s12987-024-00603-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The choroid plexus (ChP), a highly vascularized structure within the ventricles, is essential for cerebrospinal fluid (CSF) production and metabolic waste clearance, crucial for neurofluid homeostasis and cognitive function. ChP enlargement is seen in normal aging and neurodegenerative diseases like Alzheimer's disease (AD). Despite its key role of in the blood-CSF barrier (BCSFB), detailed studies on age-related changes in its perfusion and microstructure remain limited.</p><p><strong>Methods: </strong>We analyzed data from 641 healthy individuals aged between 36 and 90, using the Human Connectome Project Aging (HCP-A) dataset. Volumetric, perfusion, and diffusion metrics of the ChP were derived from structural MRI, arterial spin labeling (ASL), and diffusion-weighted imaging (DWI), respectively. Partial correlations were used to explore age-related ChP changes, and independent t-tests to examine sex differences across age decades. One-way ANOVA was employed to compare perfusion characteristics among ChP, gray matter (GM), and white matter (WM). Relationships between volume, perfusion, and diffusion were investigated, adjusting for age and sex. Additionally, the distribution of cyst-like structures within the ChP and their diffusion/perfusion MRI characteristics were analyzed across different age groups.</p><p><strong>Results: </strong>The ChP undergoes notable changes with age, including an increase in volume (r<sup>2</sup> = 0.2, P < 0.001), a decrease in blood flow (r<sup>2</sup> = 0.17, P < 0.001), and elevated mean diffusivity (MD) values (r<sup>2</sup> = 0.16, P < 0.001). Perfusion characteristics showed significant differences between the ChP, GM, and WM (P < 0.001). Both the ChP and GM exhibited age-related declines in CBF, with a more pronounced decline in the ChP. A negative correlation was observed between the age-related increase in ChP volume and the decrease in CBF, suggesting compensatory dystrophic hyperplasia in response to perfusion decline. Cyst-like structures in ChP, characterized by lower MD and reduced CBF, were found to be more prevalent in older individuals.</p><p><strong>Conclusions: </strong>Our findings provide a detailed quantitative assessment of age-related changes in ChP perfusion and diffusion, which may affect CSF production and circulation, potentially leading to waste solute accumulation and cognitive impairment.</p><p><strong>Grant support: </strong>This work was supported in part by the NIH U01AG052564, P30AG066512, P01AG060882, RF1 NS110041, R01 NS108491, U24 NS135568.</p>","PeriodicalId":12321,"journal":{"name":"Fluids and Barriers of the CNS","volume":"21 1","pages":"98"},"PeriodicalIF":5.9000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11619641/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluids and Barriers of the CNS","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12987-024-00603-y","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The choroid plexus (ChP), a highly vascularized structure within the ventricles, is essential for cerebrospinal fluid (CSF) production and metabolic waste clearance, crucial for neurofluid homeostasis and cognitive function. ChP enlargement is seen in normal aging and neurodegenerative diseases like Alzheimer's disease (AD). Despite its key role of in the blood-CSF barrier (BCSFB), detailed studies on age-related changes in its perfusion and microstructure remain limited.

Methods: We analyzed data from 641 healthy individuals aged between 36 and 90, using the Human Connectome Project Aging (HCP-A) dataset. Volumetric, perfusion, and diffusion metrics of the ChP were derived from structural MRI, arterial spin labeling (ASL), and diffusion-weighted imaging (DWI), respectively. Partial correlations were used to explore age-related ChP changes, and independent t-tests to examine sex differences across age decades. One-way ANOVA was employed to compare perfusion characteristics among ChP, gray matter (GM), and white matter (WM). Relationships between volume, perfusion, and diffusion were investigated, adjusting for age and sex. Additionally, the distribution of cyst-like structures within the ChP and their diffusion/perfusion MRI characteristics were analyzed across different age groups.

Results: The ChP undergoes notable changes with age, including an increase in volume (r2 = 0.2, P < 0.001), a decrease in blood flow (r2 = 0.17, P < 0.001), and elevated mean diffusivity (MD) values (r2 = 0.16, P < 0.001). Perfusion characteristics showed significant differences between the ChP, GM, and WM (P < 0.001). Both the ChP and GM exhibited age-related declines in CBF, with a more pronounced decline in the ChP. A negative correlation was observed between the age-related increase in ChP volume and the decrease in CBF, suggesting compensatory dystrophic hyperplasia in response to perfusion decline. Cyst-like structures in ChP, characterized by lower MD and reduced CBF, were found to be more prevalent in older individuals.

Conclusions: Our findings provide a detailed quantitative assessment of age-related changes in ChP perfusion and diffusion, which may affect CSF production and circulation, potentially leading to waste solute accumulation and cognitive impairment.

Grant support: This work was supported in part by the NIH U01AG052564, P30AG066512, P01AG060882, RF1 NS110041, R01 NS108491, U24 NS135568.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Fluids and Barriers of the CNS
Fluids and Barriers of the CNS Neuroscience-Developmental Neuroscience
CiteScore
10.70
自引率
8.20%
发文量
94
审稿时长
14 weeks
期刊介绍: "Fluids and Barriers of the CNS" is a scholarly open access journal that specializes in the intricate world of the central nervous system's fluids and barriers, which are pivotal for the health and well-being of the human body. This journal is a peer-reviewed platform that welcomes research manuscripts exploring the full spectrum of CNS fluids and barriers, with a particular focus on their roles in both health and disease. At the heart of this journal's interest is the cerebrospinal fluid (CSF), a vital fluid that circulates within the brain and spinal cord, playing a multifaceted role in the normal functioning of the brain and in various neurological conditions. The journal delves into the composition, circulation, and absorption of CSF, as well as its relationship with the parenchymal interstitial fluid and the neurovascular unit at the blood-brain barrier (BBB).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信