Active listening modulates the spatial hearing experience: a multicentric study.

IF 1.7 4区 医学 Q4 NEUROSCIENCES
Chiara Valzolgher, Tommaso Rosi, Sara Ghiselli, Domenico Cuda, Jessica Gullotta, Diego Zanetti, Giorgio Lilli, Federica Di Berardino, Marco Pozzi, Andrea Ciorba, Nicola Brunelli, Lucia Belen Musumano, Francesco Pavani
{"title":"Active listening modulates the spatial hearing experience: a multicentric study.","authors":"Chiara Valzolgher, Tommaso Rosi, Sara Ghiselli, Domenico Cuda, Jessica Gullotta, Diego Zanetti, Giorgio Lilli, Federica Di Berardino, Marco Pozzi, Andrea Ciorba, Nicola Brunelli, Lucia Belen Musumano, Francesco Pavani","doi":"10.1007/s00221-024-06955-z","DOIUrl":null,"url":null,"abstract":"<p><p>Although flexible and portable virtual reality technologies have simplified measuring participants' perception of acoustic space, their clinical adoption remains limited, often lacking ecological fidelity. In clinical practice, participants are typically instructed to remain still when testing sound localization, whereas head movements are crucial in daily life. Additionally, assessing spatial hearing extends beyond measuring accuracy to include meta-cognitive evaluations like perceived effort and confidence, which are rarely adopted. Our study hypothesized that allowing head movement during sound localization, compared to a static head condition, would reduce perceived listening effort and enhance confidence in normal hearing participants. Conducted across three audiology and otology hospital services in Northern Italy, the study involved personnel inexperienced with our VR equipment. This also tested the feasibility and usability of our VR approach in clinical settings. Results showed that head movements reduced subjective effort but did not significantly affect perceived confidence. However, during the active condition, participants reporting higher confidence exhibited less head movement and explored the space less. Similarly, those with less head movement reported lower listening effort. These findings underscore the importance of allowing natural posture to capture the full extent of spatial hearing capabilities and the value of including metacognitive evaluations in assessing performance. Our use of affordable, off-the-shelf VR equipment effectively measured spatial hearing in clinical settings, providing a flexible alternative to current static systems. This approach highlights the potential for more dynamic and comprehensive assessments in clinical audiology.</p>","PeriodicalId":12268,"journal":{"name":"Experimental Brain Research","volume":"243 1","pages":"15"},"PeriodicalIF":1.7000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Brain Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00221-024-06955-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Although flexible and portable virtual reality technologies have simplified measuring participants' perception of acoustic space, their clinical adoption remains limited, often lacking ecological fidelity. In clinical practice, participants are typically instructed to remain still when testing sound localization, whereas head movements are crucial in daily life. Additionally, assessing spatial hearing extends beyond measuring accuracy to include meta-cognitive evaluations like perceived effort and confidence, which are rarely adopted. Our study hypothesized that allowing head movement during sound localization, compared to a static head condition, would reduce perceived listening effort and enhance confidence in normal hearing participants. Conducted across three audiology and otology hospital services in Northern Italy, the study involved personnel inexperienced with our VR equipment. This also tested the feasibility and usability of our VR approach in clinical settings. Results showed that head movements reduced subjective effort but did not significantly affect perceived confidence. However, during the active condition, participants reporting higher confidence exhibited less head movement and explored the space less. Similarly, those with less head movement reported lower listening effort. These findings underscore the importance of allowing natural posture to capture the full extent of spatial hearing capabilities and the value of including metacognitive evaluations in assessing performance. Our use of affordable, off-the-shelf VR equipment effectively measured spatial hearing in clinical settings, providing a flexible alternative to current static systems. This approach highlights the potential for more dynamic and comprehensive assessments in clinical audiology.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.60
自引率
5.00%
发文量
228
审稿时长
1 months
期刊介绍: Founded in 1966, Experimental Brain Research publishes original contributions on many aspects of experimental research of the central and peripheral nervous system. The focus is on molecular, physiology, behavior, neurochemistry, developmental, cellular and molecular neurobiology, and experimental pathology relevant to general problems of cerebral function. The journal publishes original papers, reviews, and mini-reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信