Understanding the characteristic changes of retrogradation behavior and edible quality of brown rice modified with inhibiting retrogradation enzymes of Ganodermalucidum.
{"title":"Understanding the characteristic changes of retrogradation behavior and edible quality of brown rice modified with inhibiting retrogradation enzymes of <i>Ganoderma</i> <i>lucidum</i>.","authors":"Meilin Cui, Keke Qiu, Yuchang Ma, Jiali Wang, Wei Zhao, Xiuhong Zhang","doi":"10.1016/j.crfs.2024.100927","DOIUrl":null,"url":null,"abstract":"<p><p>Brown rice (BR) has gradually become a new choice for consumers due to its exceptionally nutritional value. Whereas starch retrogradation profoundly reduces its edibility, shelf-life and consumer acceptance, limiting the development of BR and even other starch-based food products. So, it is crucial for controlling the retrogradation properties of brown rice starch (BRS), and which has received significant attention in the food industry. Enzymatic modification is considered as an effective manner to retard starch retrogradation by degrading starch to an appropriate extent. <i>Ganoderma lucidum</i> can secrete various hydrolytic enzymes related to starch hydrolysis, providing a theoretical basis and feasibility for improving the starch retrogradation. Our study delves into characteristic changes of brown rice (BR) and its starch (BRS) when modified by the intracellular enzyme of <i>Ganoderma lucidum</i>, which contains several inhibiting retrogradation enzymes (<i>Gl</i>IRE), mainly including α-amylase, β-amylase, and cellulase. <i>Gl</i>IRE treatments significantly decreased the setback viscosity to 1544.33 ± 24.01 cP (2 h), diffraction intensities and relative crystallinity to 21.90 ± 0.06% (2 h) and 19.22 ± 0.19% (3 h) as per RVA and XRD analysis, accompanied with more pits and pores in surface morphology. The DSC analysis showed that <i>Gl</i>IRE treatments significantly depressed the gelatinization enthalpy to 5.86 ± 0.46 J/g (2 h) and retrogradation enthalpy. FT-IR analysis also indicated the contribution of <i>Gl</i>IRE treatments to retard starch retrogradation, including shifting the peaks of 3500 cm<sup>-1</sup>-3200 cm<sup>-1</sup> to lower wave numbers and decreasing the transmittance, as well as R<sub>1047</sub>/R<sub>1022</sub> values reducing from 0.87 to 0.73, mainly due to the shortening of starch chain length and the weakening of hydrogen bonding strength between or within the molecular chains. Simultaneously, it aslo found that <i>Gl</i>IRE treatments effectively improved the textural properties of BR, with reducing of hardness, chewiness and gumminess, and increasing of adhesiveness. Interestingly, GC-MS analysis showed that <i>Gl</i>IRE treatments could also significantly affect the types and contents of volatile compounds in BR. Our study highlights the efficacy of <i>Gl</i>IRE in starch retrogradation and rice quality-improvement, showcasing a new expansion of the research and application of <i>G. lucidum</i> and a science-based strategy for developing the edible quality of starch-based food.</p>","PeriodicalId":10939,"journal":{"name":"Current Research in Food Science","volume":"9 ","pages":"100927"},"PeriodicalIF":6.2000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11617885/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Food Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.crfs.2024.100927","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Brown rice (BR) has gradually become a new choice for consumers due to its exceptionally nutritional value. Whereas starch retrogradation profoundly reduces its edibility, shelf-life and consumer acceptance, limiting the development of BR and even other starch-based food products. So, it is crucial for controlling the retrogradation properties of brown rice starch (BRS), and which has received significant attention in the food industry. Enzymatic modification is considered as an effective manner to retard starch retrogradation by degrading starch to an appropriate extent. Ganoderma lucidum can secrete various hydrolytic enzymes related to starch hydrolysis, providing a theoretical basis and feasibility for improving the starch retrogradation. Our study delves into characteristic changes of brown rice (BR) and its starch (BRS) when modified by the intracellular enzyme of Ganoderma lucidum, which contains several inhibiting retrogradation enzymes (GlIRE), mainly including α-amylase, β-amylase, and cellulase. GlIRE treatments significantly decreased the setback viscosity to 1544.33 ± 24.01 cP (2 h), diffraction intensities and relative crystallinity to 21.90 ± 0.06% (2 h) and 19.22 ± 0.19% (3 h) as per RVA and XRD analysis, accompanied with more pits and pores in surface morphology. The DSC analysis showed that GlIRE treatments significantly depressed the gelatinization enthalpy to 5.86 ± 0.46 J/g (2 h) and retrogradation enthalpy. FT-IR analysis also indicated the contribution of GlIRE treatments to retard starch retrogradation, including shifting the peaks of 3500 cm-1-3200 cm-1 to lower wave numbers and decreasing the transmittance, as well as R1047/R1022 values reducing from 0.87 to 0.73, mainly due to the shortening of starch chain length and the weakening of hydrogen bonding strength between or within the molecular chains. Simultaneously, it aslo found that GlIRE treatments effectively improved the textural properties of BR, with reducing of hardness, chewiness and gumminess, and increasing of adhesiveness. Interestingly, GC-MS analysis showed that GlIRE treatments could also significantly affect the types and contents of volatile compounds in BR. Our study highlights the efficacy of GlIRE in starch retrogradation and rice quality-improvement, showcasing a new expansion of the research and application of G. lucidum and a science-based strategy for developing the edible quality of starch-based food.
期刊介绍:
Current Research in Food Science is an international peer-reviewed journal dedicated to advancing the breadth of knowledge in the field of food science. It serves as a platform for publishing original research articles and short communications that encompass a wide array of topics, including food chemistry, physics, microbiology, nutrition, nutraceuticals, process and package engineering, materials science, food sustainability, and food security. By covering these diverse areas, the journal aims to provide a comprehensive source of the latest scientific findings and technological advancements that are shaping the future of the food industry. The journal's scope is designed to address the multidisciplinary nature of food science, reflecting its commitment to promoting innovation and ensuring the safety and quality of the food supply.