{"title":"A Review on Leaching of Spent Lithium Battery Cathode Materials Adopting Deep Eutectic Solvents.","authors":"Chongyu Li, Jianjiao Jin, Zhang Yuan, Chenyun Zhang, Liangqin Wu, Chu Wang","doi":"10.1002/open.202400258","DOIUrl":null,"url":null,"abstract":"<p><p>As a result of the swift surge in the adoption of electric vehicles, the quantity of spent lithium-ion power batteries has been growing at an exponential rate. Improper handling of these batteries can lead to the waste of strategic metal resources and pose risks to the environment and human health. Without doubt, it is essential to scientifically recover and reuse these spent power batteries, particularly by recovering positive electrode materials. Currently, there are several methods for recovering positive electrode materials, including pyrometallurgy, hydrometallurgy, bioleaching, and deep eutectic solvents (DESs) leaching. This review concetrated on the emerging technology of DESs leaching for positive electrode materials in spent lithium-ion battery. It provided an overview of the latest advancements in DESs leaching, considering factors such as acidity, reducibility, and coordination of DESs. The current technical status was analyzed and discussed, while also addressing the challenges and prospects for the development of DESs recovery in spent Li-ion power batteries. This work aims to offer practical guidance and serve as a foundation for additional studies and widespread implementation of DESs leaching for positive electrode materials.</p>","PeriodicalId":9831,"journal":{"name":"ChemistryOpen","volume":" ","pages":"e202400258"},"PeriodicalIF":2.5000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemistryOpen","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/open.202400258","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
As a result of the swift surge in the adoption of electric vehicles, the quantity of spent lithium-ion power batteries has been growing at an exponential rate. Improper handling of these batteries can lead to the waste of strategic metal resources and pose risks to the environment and human health. Without doubt, it is essential to scientifically recover and reuse these spent power batteries, particularly by recovering positive electrode materials. Currently, there are several methods for recovering positive electrode materials, including pyrometallurgy, hydrometallurgy, bioleaching, and deep eutectic solvents (DESs) leaching. This review concetrated on the emerging technology of DESs leaching for positive electrode materials in spent lithium-ion battery. It provided an overview of the latest advancements in DESs leaching, considering factors such as acidity, reducibility, and coordination of DESs. The current technical status was analyzed and discussed, while also addressing the challenges and prospects for the development of DESs recovery in spent Li-ion power batteries. This work aims to offer practical guidance and serve as a foundation for additional studies and widespread implementation of DESs leaching for positive electrode materials.
期刊介绍:
ChemistryOpen is a multidisciplinary, gold-road open-access, international forum for the publication of outstanding Reviews, Full Papers, and Communications from all areas of chemistry and related fields. It is co-owned by 16 continental European Chemical Societies, who have banded together in the alliance called ChemPubSoc Europe for the purpose of publishing high-quality journals in the field of chemistry and its border disciplines. As some of the governments of the countries represented in ChemPubSoc Europe have strongly recommended that the research conducted with their funding is freely accessible for all readers (Open Access), ChemPubSoc Europe was concerned that no journal for which the ethical standards were monitored by a chemical society was available for such papers. ChemistryOpen fills this gap.