Development and validation of a nomogram model for prolonged length of stay in spinal fusion patients: a retrospective analysis.

IF 3.3 3区 医学 Q2 MEDICAL INFORMATICS
Linghong Wu, Xiaozhong Peng, Yao Lu, Cuiping Fu, Liujun She, Guangwei Zhu, Xianglong Zhuo, Wei Hu, Xiangtao Xie
{"title":"Development and validation of a nomogram model for prolonged length of stay in spinal fusion patients: a retrospective analysis.","authors":"Linghong Wu, Xiaozhong Peng, Yao Lu, Cuiping Fu, Liujun She, Guangwei Zhu, Xianglong Zhuo, Wei Hu, Xiangtao Xie","doi":"10.1186/s12911-024-02787-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To develop a nomogram model for the prediction of the risk of prolonged length of hospital stay (LOS) in spinal fusion patients.</p><p><strong>Methods: </strong>A retrospective cohort study was carried out on 6272 patients who had undergone spinal fusion surgery. Least absolute shrinkage and selection operator (LASSO) regression was performed on the training sets to screen variables, and the importance of independent variables was ranked via random forest. In addition, various independent variables were used in the construction of models 1 and 2. A receiver operating characteristic curve was used to evaluate the models' predictive performance. We employed Delong tests to compare the area under the curve (AUC) of the different models. Assessment of the models' capability to improve classification efficiency was achieved using continuous net reclassification improvement (NRI) and integrated discrimination improvement (IDI). The Hosmer-Lemeshow method and calibration curve was utilised to assess the calibration degree, and decision curve to evaluate its clinical practicality. A bootstrap technique that involved 10 cross-validations and was performed 10,000 times was used to conduct internal and external validation. The were outcomes of the model exhibited in a nomogram graphics. The developed nomogram was validated both internally and externally.</p><p><strong>Results: </strong>Model 1 was identified as the optimal model. The risk factors for prolonged LOS comprised blood transfusion, operation type, use of tranexamic acid (TXA), diabetes, electrolyte disturbance, body mass index (BMI), surgical procedure performed, the number of preoperative diagnoses and operative time. The diagnostic performance of the nomogram model was satisfactory, with AUC values of 0.784 and 0.795 for the internal and external validation sets, respectively. Model discrimination was favourable in both the internal (C-statistic, 0.811) and external (C-statistic, 0.814) validation sets. Calibration curve and Hosmer-Lemeshow test showed acceptable agreement between predicted and actual results. The decision curve shows that the model provides net clinical benefit within a certain decision threshold range.</p><p><strong>Conclusions: </strong>This study developed and validated a nomogram to identify the risk of prolonged LOS in spinal fusion patients, which may help clinicians to identify high-risk groups at an early stage. Predictors identified included blood transfusion, operation type, use of TXA, diabetes, electrolyte disturbance, BMI, surgical procedure performed, number of preoperative diagnoses and operative time.</p>","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":"24 1","pages":"373"},"PeriodicalIF":3.3000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11619620/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Informatics and Decision Making","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12911-024-02787-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: To develop a nomogram model for the prediction of the risk of prolonged length of hospital stay (LOS) in spinal fusion patients.

Methods: A retrospective cohort study was carried out on 6272 patients who had undergone spinal fusion surgery. Least absolute shrinkage and selection operator (LASSO) regression was performed on the training sets to screen variables, and the importance of independent variables was ranked via random forest. In addition, various independent variables were used in the construction of models 1 and 2. A receiver operating characteristic curve was used to evaluate the models' predictive performance. We employed Delong tests to compare the area under the curve (AUC) of the different models. Assessment of the models' capability to improve classification efficiency was achieved using continuous net reclassification improvement (NRI) and integrated discrimination improvement (IDI). The Hosmer-Lemeshow method and calibration curve was utilised to assess the calibration degree, and decision curve to evaluate its clinical practicality. A bootstrap technique that involved 10 cross-validations and was performed 10,000 times was used to conduct internal and external validation. The were outcomes of the model exhibited in a nomogram graphics. The developed nomogram was validated both internally and externally.

Results: Model 1 was identified as the optimal model. The risk factors for prolonged LOS comprised blood transfusion, operation type, use of tranexamic acid (TXA), diabetes, electrolyte disturbance, body mass index (BMI), surgical procedure performed, the number of preoperative diagnoses and operative time. The diagnostic performance of the nomogram model was satisfactory, with AUC values of 0.784 and 0.795 for the internal and external validation sets, respectively. Model discrimination was favourable in both the internal (C-statistic, 0.811) and external (C-statistic, 0.814) validation sets. Calibration curve and Hosmer-Lemeshow test showed acceptable agreement between predicted and actual results. The decision curve shows that the model provides net clinical benefit within a certain decision threshold range.

Conclusions: This study developed and validated a nomogram to identify the risk of prolonged LOS in spinal fusion patients, which may help clinicians to identify high-risk groups at an early stage. Predictors identified included blood transfusion, operation type, use of TXA, diabetes, electrolyte disturbance, BMI, surgical procedure performed, number of preoperative diagnoses and operative time.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
5.70%
发文量
297
审稿时长
1 months
期刊介绍: BMC Medical Informatics and Decision Making is an open access journal publishing original peer-reviewed research articles in relation to the design, development, implementation, use, and evaluation of health information technologies and decision-making for human health.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信