{"title":"A Decision Tree-Driven IoT systems for improved pre-natal diagnostic accuracy.","authors":"Xuewen Yang, Ling Liu, Yan Wang","doi":"10.1186/s12911-024-02759-x","DOIUrl":null,"url":null,"abstract":"<p><p>Prenatal diagnostics are vital for the woman as well as her unborn baby. The diagnostics help in the early identification of the possibility of complication and the initial measures that help to ameliorate the mother and the fetus health status are taken. Over the year's various techniques have been employed in diagnosing genetic disorders before birth that lack effectiveness in terms of cost, time, and places to access ultra-modern health facilities. To overcome these problems, this paper puts forward a diagnostic model that integrates Internet of Things innovation with a Machine Learning approach which is the Decision Tree Algorithms. First, it implies the application of IOT devices in the collection of vital information like heart rate, blood pressure, glucose levels, and fetal movement. The data is structured in the form of a dataset and transmitted to a Big Data storage for warehousing and processing. Secondly, the DTA is employed to analyze the data and look for patterns and possibilities of future health complications. The DTA operates in that it divides the dataset into subsets considering specific features and formulates a tree-like model of decisions. At every node, the algorithm chooses the attribute which has the highest information gain, to partition the data into different classes. This process goes on until it reaches a decision node through which, it can decide probable health problems from the input data. To increase the reliability of the developed model this study fine-tunes the model by using a large database of pre-natal health records. The system is capable of collecting data in real-time and flagging data that needs attention in the case of any abnormality to the health professional. The above methodology was tested on a 1000-record database of pre-natal health records where the proposal achieved 95% possibility of potential health problems as against 85% by classical statistical analysis. Furthermore, the system scaled down the number of false positive cases by 20 percent and false negatives by 15 percent thus the efficacy of the system.</p>","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":"24 1","pages":"375"},"PeriodicalIF":3.3000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11622561/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Informatics and Decision Making","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12911-024-02759-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Prenatal diagnostics are vital for the woman as well as her unborn baby. The diagnostics help in the early identification of the possibility of complication and the initial measures that help to ameliorate the mother and the fetus health status are taken. Over the year's various techniques have been employed in diagnosing genetic disorders before birth that lack effectiveness in terms of cost, time, and places to access ultra-modern health facilities. To overcome these problems, this paper puts forward a diagnostic model that integrates Internet of Things innovation with a Machine Learning approach which is the Decision Tree Algorithms. First, it implies the application of IOT devices in the collection of vital information like heart rate, blood pressure, glucose levels, and fetal movement. The data is structured in the form of a dataset and transmitted to a Big Data storage for warehousing and processing. Secondly, the DTA is employed to analyze the data and look for patterns and possibilities of future health complications. The DTA operates in that it divides the dataset into subsets considering specific features and formulates a tree-like model of decisions. At every node, the algorithm chooses the attribute which has the highest information gain, to partition the data into different classes. This process goes on until it reaches a decision node through which, it can decide probable health problems from the input data. To increase the reliability of the developed model this study fine-tunes the model by using a large database of pre-natal health records. The system is capable of collecting data in real-time and flagging data that needs attention in the case of any abnormality to the health professional. The above methodology was tested on a 1000-record database of pre-natal health records where the proposal achieved 95% possibility of potential health problems as against 85% by classical statistical analysis. Furthermore, the system scaled down the number of false positive cases by 20 percent and false negatives by 15 percent thus the efficacy of the system.
期刊介绍:
BMC Medical Informatics and Decision Making is an open access journal publishing original peer-reviewed research articles in relation to the design, development, implementation, use, and evaluation of health information technologies and decision-making for human health.