Low-side and multi-tone suppression in the base of the gerbil cochlea.

IF 3.2 3区 生物学 Q2 BIOPHYSICS
C Elliott Strimbu, Elizabeth S Olson
{"title":"Low-side and multi-tone suppression in the base of the gerbil cochlea.","authors":"C Elliott Strimbu, Elizabeth S Olson","doi":"10.1016/j.bpj.2024.12.004","DOIUrl":null,"url":null,"abstract":"<p><p>The cochlea's mechanical response to sound stimulation is nonlinear, likely due to saturation of the mechano-electric transduction current that is part of an electromechanical feedback loop. The ability of a second tone or tones to reduce the response to a probe tone is one manifestation of nonlinearity, termed suppression. Using optical coherence tomography to measure motion within the organ of Corti, regional motion variations have been observed. Here, we report on the suppression that occurs within the organ of Corti when a high sound level, low frequency suppressor tone was delivered along with a sweep of discreet single-tones. Responses were measured in the base of the gerbil cochlea at two best frequency locations, with two different directions of observation relative to the sensory tissue's anatomical axes. Suppression extended over a wide frequency range in the outer hair cell region, whereas it was typically limited to the best frequency peak in the reticular lamina region and at the basilar membrane. Aspects of the observed suppression were consistent with the effect of a saturating nonlinearity. Recent measurements have noted the three-dimensional nature of organ of Corti motion. The effects of suppression observed here could be due to a combination of reduced motion amplitude and altered vibration axis.</p>","PeriodicalId":8922,"journal":{"name":"Biophysical journal","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bpj.2024.12.004","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The cochlea's mechanical response to sound stimulation is nonlinear, likely due to saturation of the mechano-electric transduction current that is part of an electromechanical feedback loop. The ability of a second tone or tones to reduce the response to a probe tone is one manifestation of nonlinearity, termed suppression. Using optical coherence tomography to measure motion within the organ of Corti, regional motion variations have been observed. Here, we report on the suppression that occurs within the organ of Corti when a high sound level, low frequency suppressor tone was delivered along with a sweep of discreet single-tones. Responses were measured in the base of the gerbil cochlea at two best frequency locations, with two different directions of observation relative to the sensory tissue's anatomical axes. Suppression extended over a wide frequency range in the outer hair cell region, whereas it was typically limited to the best frequency peak in the reticular lamina region and at the basilar membrane. Aspects of the observed suppression were consistent with the effect of a saturating nonlinearity. Recent measurements have noted the three-dimensional nature of organ of Corti motion. The effects of suppression observed here could be due to a combination of reduced motion amplitude and altered vibration axis.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biophysical journal
Biophysical journal 生物-生物物理
CiteScore
6.10
自引率
5.90%
发文量
3090
审稿时长
2 months
期刊介绍: BJ publishes original articles, letters, and perspectives on important problems in modern biophysics. The papers should be written so as to be of interest to a broad community of biophysicists. BJ welcomes experimental studies that employ quantitative physical approaches for the study of biological systems, including or spanning scales from molecule to whole organism. Experimental studies of a purely descriptive or phenomenological nature, with no theoretical or mechanistic underpinning, are not appropriate for publication in BJ. Theoretical studies should offer new insights into the understanding ofexperimental results or suggest new experimentally testable hypotheses. Articles reporting significant methodological or technological advances, which have potential to open new areas of biophysical investigation, are also suitable for publication in BJ. Papers describing improvements in accuracy or speed of existing methods or extra detail within methods described previously are not suitable for BJ.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信