Mechanisms of delta opioid receptor inhibition of parallel fibers-purkinje cell synaptic transmission in the mouse cerebellar cortex.

IF 2.7 4区 医学 Q3 NEUROSCIENCES
Lu Zhang, Dan Wang, Shuang Shi, Shuang Wu, Zhi Li, Jun Nan, Yan Lan
{"title":"Mechanisms of delta opioid receptor inhibition of parallel fibers-purkinje cell synaptic transmission in the mouse cerebellar cortex.","authors":"Lu Zhang, Dan Wang, Shuang Shi, Shuang Wu, Zhi Li, Jun Nan, Yan Lan","doi":"10.1016/j.brainres.2024.149374","DOIUrl":null,"url":null,"abstract":"<p><p>Delta opioid receptors (DORs) are widely expressed throughout the central nervous system, including the cerebellum, where they play a regulatory role in neurogenesis. In the cerebellar cortex, Purkinje cells (PCs), the sole output neurons, receive glutamatergic synaptic input from parallel fibers (PFs)-the axonal extensions of granule cells-forming PF-PC synapses. However, the precise distribution of DORs within these synapses and their impact on synaptic transmission remain unclear. In this study, we utilized whole-cell patch-clamp recordings and neuropharmacological approaches to explore the effects of DORs activation on PF-PC synaptic transmission in the mouse cerebellar cortex and to elucidate the underlying mechanisms. We found that the selective DORs agonist DPDPE significantly reduced the amplitude and area under the curve (AUC) of PF-PC evoked excitatory postsynaptic currents (eEPSCs), accompanied by an increase in the paired-pulse ratio (PPR). This inhibitory effect was blocked by the DORs antagonist Naltrindole. Additionally, DPDPE decreased the frequency of PF-PC miniature excitatory postsynaptic currents (mEPSCs) without affecting their amplitude, indicating a presynaptic site of action. When the protein kinase A (PKA) inhibitor PKI was added to the internal solution of the recording electrode, it did not alter the DPDPE-induced suppression of PF-PC mEPSC frequency. However, this suppression was reversed by KT5720, a cell-permeable PKA-specific inhibitor. These findings suggest that DPDPE inhibits PF-PC synaptic transmission through the preferential activation of presynaptic DORs, with this process being dependent on the cyclic adenosine monophosphate (cAMP)-PKA signaling pathway.</p>","PeriodicalId":9083,"journal":{"name":"Brain Research","volume":" ","pages":"149374"},"PeriodicalIF":2.7000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.brainres.2024.149374","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Delta opioid receptors (DORs) are widely expressed throughout the central nervous system, including the cerebellum, where they play a regulatory role in neurogenesis. In the cerebellar cortex, Purkinje cells (PCs), the sole output neurons, receive glutamatergic synaptic input from parallel fibers (PFs)-the axonal extensions of granule cells-forming PF-PC synapses. However, the precise distribution of DORs within these synapses and their impact on synaptic transmission remain unclear. In this study, we utilized whole-cell patch-clamp recordings and neuropharmacological approaches to explore the effects of DORs activation on PF-PC synaptic transmission in the mouse cerebellar cortex and to elucidate the underlying mechanisms. We found that the selective DORs agonist DPDPE significantly reduced the amplitude and area under the curve (AUC) of PF-PC evoked excitatory postsynaptic currents (eEPSCs), accompanied by an increase in the paired-pulse ratio (PPR). This inhibitory effect was blocked by the DORs antagonist Naltrindole. Additionally, DPDPE decreased the frequency of PF-PC miniature excitatory postsynaptic currents (mEPSCs) without affecting their amplitude, indicating a presynaptic site of action. When the protein kinase A (PKA) inhibitor PKI was added to the internal solution of the recording electrode, it did not alter the DPDPE-induced suppression of PF-PC mEPSC frequency. However, this suppression was reversed by KT5720, a cell-permeable PKA-specific inhibitor. These findings suggest that DPDPE inhibits PF-PC synaptic transmission through the preferential activation of presynaptic DORs, with this process being dependent on the cyclic adenosine monophosphate (cAMP)-PKA signaling pathway.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Brain Research
Brain Research 医学-神经科学
CiteScore
5.90
自引率
3.40%
发文量
268
审稿时长
47 days
期刊介绍: An international multidisciplinary journal devoted to fundamental research in the brain sciences. Brain Research publishes papers reporting interdisciplinary investigations of nervous system structure and function that are of general interest to the international community of neuroscientists. As is evident from the journals name, its scope is broad, ranging from cellular and molecular studies through systems neuroscience, cognition and disease. Invited reviews are also published; suggestions for and inquiries about potential reviews are welcomed. With the appearance of the final issue of the 2011 subscription, Vol. 67/1-2 (24 June 2011), Brain Research Reviews has ceased publication as a distinct journal separate from Brain Research. Review articles accepted for Brain Research are now published in that journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信