Sixiang Sun, Can Cui, Yuanyuan Li, Yingjian Meng, Wenxiang Pan, Dongyan Li
{"title":"A Machine learning classification framework using fused fractal property feature vectors for Alzheimer's disease diagnosis.","authors":"Sixiang Sun, Can Cui, Yuanyuan Li, Yingjian Meng, Wenxiang Pan, Dongyan Li","doi":"10.1016/j.brainres.2024.149373","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) profoundly affects brain tissue and network structures. Analyzing the topological properties of these networks helps to understand the progression of the disease. Most studies focus on single-scale brain networks, but few address multiscale brain networks. In this study, the renormalization group approach was applied to rescale the gray matter brain networks of AD patients and cognitively normal (CN) into three scales: the original, once-renormalized, and twice-renormalized networks. Based on the fractal property of these networks at different scales, a novel framework for classifying Alzheimer's disease using fractal and renormalization group was proposed. We integrated the fractal metrics across different scales to create fused feature vectors, which served as inputs for the classification framework aimed at diagnosing Alzheimer's disease. The experimental result indicates that the original and once-renormalized networks of both CN and AD exhibit the fractal property. The classification framework performed best when using the fused feature vector, including the average connection ratio of the original and once-renormalized networks. Using the fused feature vector of the average connection ratio, the One-Dimensional Convolution Neural Network model achieved an accuracy of 92.59% and an F1 score of 91.19%. This marks an improvement of approximately 10% in accuracy and 5% in F1 score compared to results using feature fusion of the average degree, average path length, and clustering coefficient.</p>","PeriodicalId":9083,"journal":{"name":"Brain Research","volume":" ","pages":"149373"},"PeriodicalIF":2.7000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.brainres.2024.149373","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Alzheimer's disease (AD) profoundly affects brain tissue and network structures. Analyzing the topological properties of these networks helps to understand the progression of the disease. Most studies focus on single-scale brain networks, but few address multiscale brain networks. In this study, the renormalization group approach was applied to rescale the gray matter brain networks of AD patients and cognitively normal (CN) into three scales: the original, once-renormalized, and twice-renormalized networks. Based on the fractal property of these networks at different scales, a novel framework for classifying Alzheimer's disease using fractal and renormalization group was proposed. We integrated the fractal metrics across different scales to create fused feature vectors, which served as inputs for the classification framework aimed at diagnosing Alzheimer's disease. The experimental result indicates that the original and once-renormalized networks of both CN and AD exhibit the fractal property. The classification framework performed best when using the fused feature vector, including the average connection ratio of the original and once-renormalized networks. Using the fused feature vector of the average connection ratio, the One-Dimensional Convolution Neural Network model achieved an accuracy of 92.59% and an F1 score of 91.19%. This marks an improvement of approximately 10% in accuracy and 5% in F1 score compared to results using feature fusion of the average degree, average path length, and clustering coefficient.
期刊介绍:
An international multidisciplinary journal devoted to fundamental research in the brain sciences.
Brain Research publishes papers reporting interdisciplinary investigations of nervous system structure and function that are of general interest to the international community of neuroscientists. As is evident from the journals name, its scope is broad, ranging from cellular and molecular studies through systems neuroscience, cognition and disease. Invited reviews are also published; suggestions for and inquiries about potential reviews are welcomed.
With the appearance of the final issue of the 2011 subscription, Vol. 67/1-2 (24 June 2011), Brain Research Reviews has ceased publication as a distinct journal separate from Brain Research. Review articles accepted for Brain Research are now published in that journal.