{"title":"Comparative analysis of fecal microbiota between diarrhea and non-diarrhea piglets reveals biomarkers of gut microbiota associated with diarrhea.","authors":"Jiang Zhu, Yue Sun, Lingyan Ma, Qu Chen, Caihong Hu, Hua Yang, Qihua Hong, Yingping Xiao","doi":"10.1016/j.aninu.2024.05.013","DOIUrl":null,"url":null,"abstract":"<p><p>Diarrhea poses a significant threat to the health and well-being of weaned piglets, leading to substantial morbidity and mortality and economic loss in the pig industry. However, the structural characteristics of the gut microbiota and the key genera associated with early diarrhea in piglets within large-scale production systems are poorly understood. This study aimed to investigate the differences in the microbial community structure and the specific genera alteration between the healthy piglets and diarrhea piglets, and to identify the biomarkers of gut microbiota associated with diarrhea in piglets. A total of 250 fecal samples, including 130 healthy piglets (Duroc × Landrace × Large Yorkshire) in the Control group and 120 from diarrhea piglets in Diarrhea group, were collected from three large-scale farms as discovery cohorts and were used for 16S rRNA gene sequencing. Additionally, 150 fecal samples from another large-scale pig farm were collected for the validation trail. The Chao1 and ACE indices were obviously lower (<i>P</i> < 0.01) in the diarrhea piglets compared to the healthy ones. Principal coordinate analysis showed significant differences in the distance matrix of gut microbiota between the healthy and diarrhea piglets (Bray-Curtis: <i>P</i> = 0.001, Jaccard: <i>P</i> = 0.001). Eighty-five genera were differentially enriched (<i>P</i> < 0.001) between healthy and diarrhea piglets. Notably, <i>Treponema</i>, <i>Sphaerochaeta</i>, <i>Escherichia-Shigella</i>, <i>Slackia</i>, and <i>Staphylococcus</i> were identified as potential biomarkers of diarrhea susceptibility; <i>Clostridium sensu stricto 1</i>, <i>Prevotella_9</i>, <i>Olsenella</i>, <i>Dorea</i>, and <i>Lachnospiraceae NK4A136 group</i> were found to be beneficial for maintaining intestinal homeostasis. These differentially enriched genera of healthy and diarrhea piglets were further confirmed in the validation cohort. In conclusion, this study identified the diarrhea-associated and beneficial genera in the faces of piglet, providing a theoretical basis for the diagnosis and intervention of diarrhea in weaned piglets.</p>","PeriodicalId":8184,"journal":{"name":"Animal Nutrition","volume":"19 ","pages":"401-410"},"PeriodicalIF":6.1000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11617881/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Nutrition","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.aninu.2024.05.013","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Diarrhea poses a significant threat to the health and well-being of weaned piglets, leading to substantial morbidity and mortality and economic loss in the pig industry. However, the structural characteristics of the gut microbiota and the key genera associated with early diarrhea in piglets within large-scale production systems are poorly understood. This study aimed to investigate the differences in the microbial community structure and the specific genera alteration between the healthy piglets and diarrhea piglets, and to identify the biomarkers of gut microbiota associated with diarrhea in piglets. A total of 250 fecal samples, including 130 healthy piglets (Duroc × Landrace × Large Yorkshire) in the Control group and 120 from diarrhea piglets in Diarrhea group, were collected from three large-scale farms as discovery cohorts and were used for 16S rRNA gene sequencing. Additionally, 150 fecal samples from another large-scale pig farm were collected for the validation trail. The Chao1 and ACE indices were obviously lower (P < 0.01) in the diarrhea piglets compared to the healthy ones. Principal coordinate analysis showed significant differences in the distance matrix of gut microbiota between the healthy and diarrhea piglets (Bray-Curtis: P = 0.001, Jaccard: P = 0.001). Eighty-five genera were differentially enriched (P < 0.001) between healthy and diarrhea piglets. Notably, Treponema, Sphaerochaeta, Escherichia-Shigella, Slackia, and Staphylococcus were identified as potential biomarkers of diarrhea susceptibility; Clostridium sensu stricto 1, Prevotella_9, Olsenella, Dorea, and Lachnospiraceae NK4A136 group were found to be beneficial for maintaining intestinal homeostasis. These differentially enriched genera of healthy and diarrhea piglets were further confirmed in the validation cohort. In conclusion, this study identified the diarrhea-associated and beneficial genera in the faces of piglet, providing a theoretical basis for the diagnosis and intervention of diarrhea in weaned piglets.
Animal NutritionAgricultural and Biological Sciences-Animal Science and Zoology
CiteScore
7.40
自引率
3.20%
发文量
172
审稿时长
12 weeks
期刊介绍:
Animal Nutrition encompasses the full gamut of animal nutritional sciences and reviews including, but not limited to, fundamental aspects of animal nutrition such as nutritional requirements, metabolic studies, body composition, energetics, immunology, neuroscience, microbiology, genetics and molecular and cell biology related to nutrition, and more applied aspects of animal nutrition, such as raw material evaluation, feed additives, nutritive value of novel ingredients and feed safety.