An OLIF Cage Integrated with a Low-Profile Plate and Cross Screws Could Reduce the Risk of Postoperative Complications Biomechanically.

IF 3 2区 医学 Q3 ENGINEERING, BIOMEDICAL
Ping Cai, Chen Xu, Zifan Zhang, Zhongxin Fang, Chao Deng, Gang Chen, Guoyou Wang, Jingchi Li
{"title":"An OLIF Cage Integrated with a Low-Profile Plate and Cross Screws Could Reduce the Risk of Postoperative Complications Biomechanically.","authors":"Ping Cai, Chen Xu, Zifan Zhang, Zhongxin Fang, Chao Deng, Gang Chen, Guoyou Wang, Jingchi Li","doi":"10.1007/s10439-024-03643-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Stand-alone oblique lumbar interbody fusion (OLIF) cannot provide credible postoperative stability; additional fixation devices (AFDs) have been used to optimize surgical segment stability. Anterior lateral single rod (ALSR) screw fixation can be performed without intraoperative body position changes and additional surgical incisions, but its biomechanical defect may trigger complications. Inspired by the cross screw in other fixation devices, we designed an OLIF cage integrated with a low-profile plate and cross screw (LPCS).</p><p><strong>Methods: </strong>This study was designed to investigate whether the biomechanical performance of the LPCS OLIF cage is better than that of OLIF with ALSR fixation. The pullout and bending strength of the newly designed conical screw were tested by comparing it with a clinically used cylindrical screw. Different directional fixation strengths of the LPCS OLIF cage were tested by comparing the failure moment and stiffness with the ALSR fixation model. To test the fixation stability and potential risk for screw loosening in models with LPCS OLIF, we also compared the surgical segment's range of motions (ROMs) and stress distributions on OLIF models without and with different AFD fixation under physiological loading conditions.</p><p><strong>Results: </strong>The bending and pullout strength of the conical screw was better than that of the clinically used screw, and the failure moment and stiffness of the LPCS OLIF model were higher than those of the ALSR model, especially under the extension loading conditions. In which, the maximum failure moment of ALSR fixed OLIF model was 0.88 Nm and 0.76 Nm, while that of the LPCS OLIF model was 9.79 Nm and 7.48 Nm in models with normal and osteoporotic BMD, respectively. Compared to the ALSR fixed OLIF model, failure moment of LPCS models increased by 1012.5% and 884.21% in normal and osteoporotic models, respectively. Moreover, under most physiological loading conditions, the ROM and stress values of the LPCS OLIF model were lower than those of the ALSR model and even slightly lower than those of the OLIF model with bilateral pedicle screw fixation under limited loading conditions.</p><p><strong>Conclusions: </strong>Compared to OLIF with ALSR fixation, the newly developed LPCS OLIF cage demonstrates inherent biomechanical advantages in establishing immediate postoperative stability and reducing complications related to stress concentration. However, the conclusions of current research should still be validated through in vitro mechanical tests and clinical trials.</p>","PeriodicalId":7986,"journal":{"name":"Annals of Biomedical Engineering","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10439-024-03643-5","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Stand-alone oblique lumbar interbody fusion (OLIF) cannot provide credible postoperative stability; additional fixation devices (AFDs) have been used to optimize surgical segment stability. Anterior lateral single rod (ALSR) screw fixation can be performed without intraoperative body position changes and additional surgical incisions, but its biomechanical defect may trigger complications. Inspired by the cross screw in other fixation devices, we designed an OLIF cage integrated with a low-profile plate and cross screw (LPCS).

Methods: This study was designed to investigate whether the biomechanical performance of the LPCS OLIF cage is better than that of OLIF with ALSR fixation. The pullout and bending strength of the newly designed conical screw were tested by comparing it with a clinically used cylindrical screw. Different directional fixation strengths of the LPCS OLIF cage were tested by comparing the failure moment and stiffness with the ALSR fixation model. To test the fixation stability and potential risk for screw loosening in models with LPCS OLIF, we also compared the surgical segment's range of motions (ROMs) and stress distributions on OLIF models without and with different AFD fixation under physiological loading conditions.

Results: The bending and pullout strength of the conical screw was better than that of the clinically used screw, and the failure moment and stiffness of the LPCS OLIF model were higher than those of the ALSR model, especially under the extension loading conditions. In which, the maximum failure moment of ALSR fixed OLIF model was 0.88 Nm and 0.76 Nm, while that of the LPCS OLIF model was 9.79 Nm and 7.48 Nm in models with normal and osteoporotic BMD, respectively. Compared to the ALSR fixed OLIF model, failure moment of LPCS models increased by 1012.5% and 884.21% in normal and osteoporotic models, respectively. Moreover, under most physiological loading conditions, the ROM and stress values of the LPCS OLIF model were lower than those of the ALSR model and even slightly lower than those of the OLIF model with bilateral pedicle screw fixation under limited loading conditions.

Conclusions: Compared to OLIF with ALSR fixation, the newly developed LPCS OLIF cage demonstrates inherent biomechanical advantages in establishing immediate postoperative stability and reducing complications related to stress concentration. However, the conclusions of current research should still be validated through in vitro mechanical tests and clinical trials.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Biomedical Engineering
Annals of Biomedical Engineering 工程技术-工程:生物医学
CiteScore
7.50
自引率
15.80%
发文量
212
审稿时长
3 months
期刊介绍: Annals of Biomedical Engineering is an official journal of the Biomedical Engineering Society, publishing original articles in the major fields of bioengineering and biomedical engineering. The Annals is an interdisciplinary and international journal with the aim to highlight integrated approaches to the solutions of biological and biomedical problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信