Transcranial Magneto-Acoustic Stimulation Enhances Motor Function and Modulates Cortical Excitability of Motor Cortex in a Parkinson's Disease Mouse Model.
{"title":"Transcranial Magneto-Acoustic Stimulation Enhances Motor Function and Modulates Cortical Excitability of Motor Cortex in a Parkinson's Disease Mouse Model.","authors":"Shuai Zhang, Qingzhao Wang, Yihao Xu, Haochen Zhang, Jinrui Mi, Xiaochao Lu, Ruiyang Fan, Jiangwei Lv, Guizhi Xu","doi":"10.1016/j.bbr.2024.115364","DOIUrl":null,"url":null,"abstract":"<p><p>Parkinson's disease (PD) is a neurodegenerative disorder characterized primarily by motor dysfunction. Transcranial magneto-acoustic stimulation (TMAS), an emerging non-invasive brain neuromodulation technology, is increasingly being applied in the treatment of brain diseases. However, the effects of TMAS on PD are unknown, which is not well studied. Here, we utilized TMAS on PD model mice induced by MPTP to investigate the underlying mechanism of therapy. Our study found that TMAS improved the behavioral performance of PD model mice, enhancing the motor function and motivation for movement. Besides, it inhibited the increased beta oscillations in the motor cortex, while also reducing gamma oscillations. Moreover, the abnormally exaggerated beta-broad gamma phase amplitude coupling (PAC) was decreased after TMAS, and there was a significant negative correlation between PAC and both distance traveled and mean speed during the open filed test. Additionally, the ongoing stimulation could provide neuroprotection, implying that TMAS could ameliorate the loss of dopaminergic neurons, with no damage observed in the brain tissue of mice. Our findings suggest that TMAS could provide a non-invasive tool for the treatment of Parkinson's disease and beta-broad gamma phase amplitude coupling could be employed as a biomarker for PD.</p>","PeriodicalId":8823,"journal":{"name":"Behavioural Brain Research","volume":" ","pages":"115364"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavioural Brain Research","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1016/j.bbr.2024.115364","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized primarily by motor dysfunction. Transcranial magneto-acoustic stimulation (TMAS), an emerging non-invasive brain neuromodulation technology, is increasingly being applied in the treatment of brain diseases. However, the effects of TMAS on PD are unknown, which is not well studied. Here, we utilized TMAS on PD model mice induced by MPTP to investigate the underlying mechanism of therapy. Our study found that TMAS improved the behavioral performance of PD model mice, enhancing the motor function and motivation for movement. Besides, it inhibited the increased beta oscillations in the motor cortex, while also reducing gamma oscillations. Moreover, the abnormally exaggerated beta-broad gamma phase amplitude coupling (PAC) was decreased after TMAS, and there was a significant negative correlation between PAC and both distance traveled and mean speed during the open filed test. Additionally, the ongoing stimulation could provide neuroprotection, implying that TMAS could ameliorate the loss of dopaminergic neurons, with no damage observed in the brain tissue of mice. Our findings suggest that TMAS could provide a non-invasive tool for the treatment of Parkinson's disease and beta-broad gamma phase amplitude coupling could be employed as a biomarker for PD.
期刊介绍:
Behavioural Brain Research is an international, interdisciplinary journal dedicated to the publication of articles in the field of behavioural neuroscience, broadly defined. Contributions from the entire range of disciplines that comprise the neurosciences, behavioural sciences or cognitive sciences are appropriate, as long as the goal is to delineate the neural mechanisms underlying behaviour. Thus, studies may range from neurophysiological, neuroanatomical, neurochemical or neuropharmacological analysis of brain-behaviour relations, including the use of molecular genetic or behavioural genetic approaches, to studies that involve the use of brain imaging techniques, to neuroethological studies. Reports of original research, of major methodological advances, or of novel conceptual approaches are all encouraged. The journal will also consider critical reviews on selected topics.