The early transition to cold-induced browning in mouse subcutaneous white adipose tissue (scWAT) involves proteins related to nerve remodeling, cytoskeleton, mitochondria, and immune cells.

IF 3.5 4区 生物学 Q2 ENDOCRINOLOGY & METABOLISM
Adipocyte Pub Date : 2024-12-01 Epub Date: 2024-12-06 DOI:10.1080/21623945.2024.2428938
Magdalena Blaszkiewicz, Cory P Johnson, Jake W Willows, Miranda L Gardner, Dylan R Taplin, Michael A Freitas, Kristy L Townsend
{"title":"The early transition to cold-induced browning in mouse subcutaneous white adipose tissue (scWAT) involves proteins related to nerve remodeling, cytoskeleton, mitochondria, and immune cells.","authors":"Magdalena Blaszkiewicz, Cory P Johnson, Jake W Willows, Miranda L Gardner, Dylan R Taplin, Michael A Freitas, Kristy L Townsend","doi":"10.1080/21623945.2024.2428938","DOIUrl":null,"url":null,"abstract":"<p><p>White adipose tissue (WAT) is a dynamic organ capable of remodelling in response to metabolic state. For example, in response to stimuli such as cold exposure, WAT can develop inducible brown adipocytes ('browning') capable of non-shivering thermogenesis, through concurrent changes to mitochondrial content and function. This is aided by increased neurite outgrowth and angiogenesis across the tissue, providing the needed neurovascular supply for uncoupling protein 1 activation. While several RNA-sequencing studies have been performed in WAT, including newer single cell and single nuclei studies, little work has been done to investigate changes to the adipose proteome, particularly during dynamic periods of tissue remodelling such as cold stimulation. Here, we conducted a comprehensive proteomic analysis of inguinal subcutaneous (sc) WAT during the initial 'browning' period of 24 or 72hrs of cold exposure in mice. We identified four significant pathways impacted by cold stimulation that are involved in tissue remodelling, which included mitochondrial function and metabolism, cytoskeletal remodelling, the immune response, and the nervous system. Taken together, we found that early changes in the proteome of WAT with cold stimulation predicted later structural and functional changes in the tissue that are important for tissue and whole-body remodelling to meet energetic and metabolic needs.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"13 1","pages":"2428938"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11633174/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adipocyte","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/21623945.2024.2428938","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

White adipose tissue (WAT) is a dynamic organ capable of remodelling in response to metabolic state. For example, in response to stimuli such as cold exposure, WAT can develop inducible brown adipocytes ('browning') capable of non-shivering thermogenesis, through concurrent changes to mitochondrial content and function. This is aided by increased neurite outgrowth and angiogenesis across the tissue, providing the needed neurovascular supply for uncoupling protein 1 activation. While several RNA-sequencing studies have been performed in WAT, including newer single cell and single nuclei studies, little work has been done to investigate changes to the adipose proteome, particularly during dynamic periods of tissue remodelling such as cold stimulation. Here, we conducted a comprehensive proteomic analysis of inguinal subcutaneous (sc) WAT during the initial 'browning' period of 24 or 72hrs of cold exposure in mice. We identified four significant pathways impacted by cold stimulation that are involved in tissue remodelling, which included mitochondrial function and metabolism, cytoskeletal remodelling, the immune response, and the nervous system. Taken together, we found that early changes in the proteome of WAT with cold stimulation predicted later structural and functional changes in the tissue that are important for tissue and whole-body remodelling to meet energetic and metabolic needs.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Adipocyte
Adipocyte Medicine-Histology
CiteScore
6.50
自引率
3.00%
发文量
46
审稿时长
32 weeks
期刊介绍: Adipocyte recognizes that the adipose tissue is the largest endocrine organ in the body, and explores the link between dysfunctional adipose tissue and the growing number of chronic diseases including diabetes, hypertension, cardiovascular disease and cancer. Historically, the primary function of the adipose tissue was limited to energy storage and thermoregulation. However, a plethora of research over the past 3 decades has recognized the dynamic role of the adipose tissue and its contribution to a variety of physiological processes including reproduction, angiogenesis, apoptosis, inflammation, blood pressure, coagulation, fibrinolysis, immunity and general metabolic homeostasis. The field of Adipose Tissue research has grown tremendously, and Adipocyte is the first international peer-reviewed journal of its kind providing a multi-disciplinary forum for research focusing exclusively on all aspects of adipose tissue physiology and pathophysiology. Adipocyte accepts high-profile submissions in basic, translational and clinical research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信