Yiling Mai, Johanna Flechsig, Jonathan Warr, Thomas Hummel
{"title":"Responses to the activation of different intranasal trigeminal receptors: Evidence from behavioral, peripheral and central levels.","authors":"Yiling Mai, Johanna Flechsig, Jonathan Warr, Thomas Hummel","doi":"10.1016/j.bbr.2024.115371","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>There are various receptors that mediate intranasal trigeminal sensations. However, few studies compare the response patterns across different receptor activations.</p><p><strong>Methods: </strong>We recorded negative mucosal potentials (NMPs) in 24 healthy participants and event-related potentials (ERPs) in 17 participants during exposure to five odors that trigger trigeminal sensations and one olfactory stimulus. Additionally, 10 participants completed a continuous odor intensity rating task.</p><p><strong>Results: </strong>We observed a significant effect of odor type on NMP amplitudes (F=13.51-21.88, p's < 0.01), with cyclohexanone (TRPV1) and CO2 (TRPV1 +A1) inducing greater N1 and/or P1N1 amplitudes than other stimuli (t = 3.28-7.54, p's < 0.05). Similar differences were seen in ERP amplitudes (F=3.69-12.25, p's < 0.05), with cyclohexanone showing greater P2 and/or N1P2 amplitudes than PEA (odorant), carvacrol (TRPV3 +A1), and perillaldehyde (TRPA1) (t = 3.13-4.10, p's < 0.05). CO2 also produced greater amplitudes than carvacrol (t = 3.53-4.42, p's < 0.05). In the odor intensity rating task, cyclohexanone, CO2, and isopulegol (TRPM8 +TRPA1) had higher peak ratings, steeper slopes, and/or shorter latencies (F=6.15-13.86, p's < 0.01; t = 3.14-7.76, p's < 0.05).</p><p><strong>Conclusions: </strong>Activation of different intranasal trigeminal receptors yields varied responses. Notably, stimuli involving TRPV1 activation, linked to irritation or pain, elicited stronger behavioral and neural activity compared to stimuli involving other receptors, even when controlling for rated stimulus intensity. This emphasizes TRPV1's significance in survival adaptation. Future studies should test different sets of stimulants to verify the robustness of these findings.</p>","PeriodicalId":8823,"journal":{"name":"Behavioural Brain Research","volume":" ","pages":"115371"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavioural Brain Research","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1016/j.bbr.2024.115371","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Aim: There are various receptors that mediate intranasal trigeminal sensations. However, few studies compare the response patterns across different receptor activations.
Methods: We recorded negative mucosal potentials (NMPs) in 24 healthy participants and event-related potentials (ERPs) in 17 participants during exposure to five odors that trigger trigeminal sensations and one olfactory stimulus. Additionally, 10 participants completed a continuous odor intensity rating task.
Results: We observed a significant effect of odor type on NMP amplitudes (F=13.51-21.88, p's < 0.01), with cyclohexanone (TRPV1) and CO2 (TRPV1 +A1) inducing greater N1 and/or P1N1 amplitudes than other stimuli (t = 3.28-7.54, p's < 0.05). Similar differences were seen in ERP amplitudes (F=3.69-12.25, p's < 0.05), with cyclohexanone showing greater P2 and/or N1P2 amplitudes than PEA (odorant), carvacrol (TRPV3 +A1), and perillaldehyde (TRPA1) (t = 3.13-4.10, p's < 0.05). CO2 also produced greater amplitudes than carvacrol (t = 3.53-4.42, p's < 0.05). In the odor intensity rating task, cyclohexanone, CO2, and isopulegol (TRPM8 +TRPA1) had higher peak ratings, steeper slopes, and/or shorter latencies (F=6.15-13.86, p's < 0.01; t = 3.14-7.76, p's < 0.05).
Conclusions: Activation of different intranasal trigeminal receptors yields varied responses. Notably, stimuli involving TRPV1 activation, linked to irritation or pain, elicited stronger behavioral and neural activity compared to stimuli involving other receptors, even when controlling for rated stimulus intensity. This emphasizes TRPV1's significance in survival adaptation. Future studies should test different sets of stimulants to verify the robustness of these findings.
期刊介绍:
Behavioural Brain Research is an international, interdisciplinary journal dedicated to the publication of articles in the field of behavioural neuroscience, broadly defined. Contributions from the entire range of disciplines that comprise the neurosciences, behavioural sciences or cognitive sciences are appropriate, as long as the goal is to delineate the neural mechanisms underlying behaviour. Thus, studies may range from neurophysiological, neuroanatomical, neurochemical or neuropharmacological analysis of brain-behaviour relations, including the use of molecular genetic or behavioural genetic approaches, to studies that involve the use of brain imaging techniques, to neuroethological studies. Reports of original research, of major methodological advances, or of novel conceptual approaches are all encouraged. The journal will also consider critical reviews on selected topics.