Xiaoye Michael Wang , Michael Nitsche , Gabby Resch , Ali Mazalek , Timothy N. Welsh
{"title":"Mixed reality alters motor planning and control","authors":"Xiaoye Michael Wang , Michael Nitsche , Gabby Resch , Ali Mazalek , Timothy N. Welsh","doi":"10.1016/j.bbr.2024.115373","DOIUrl":null,"url":null,"abstract":"<div><div>Compared to physical unmediated reality (UR), mixed reality technologies, such as Virtual (VR) and Augmented (AR) Reality, entail perturbations across multiple sensory modalities (visual, haptic, etc.) that could alter how actors move within the different environments. Because of the mediated nature, goal-directed movements in VR and AR may rely on planning and control processes that are different from movements in UR, resulting in less efficient motor control. The current study involved participants performing manual pointing movements on Müller-Lyer illusion stimuli to examine the relative contributions of movement planning and online control in UR, VR, and AR. Compared to UR, movements in VR were slower but were equally variable with a comparable level of online control, whereas movements in AR showed comparable speed but exhibited higher variability and less online control. Further, movements in VR and AR demonstrated a greater illusory effect in endpoint accuracy relative to UR. These findings suggested that participants in VR adopted an active compensation strategy to overcome the impact of less efficient online control, whereas participants in AR did not. The findings that movement planning and execution in VR and AR are fundamentally different from those in UR provide valuable insights into the potential neural systems engaged during movements in different realities.</div></div>","PeriodicalId":8823,"journal":{"name":"Behavioural Brain Research","volume":"480 ","pages":"Article 115373"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavioural Brain Research","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166432824005291","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Compared to physical unmediated reality (UR), mixed reality technologies, such as Virtual (VR) and Augmented (AR) Reality, entail perturbations across multiple sensory modalities (visual, haptic, etc.) that could alter how actors move within the different environments. Because of the mediated nature, goal-directed movements in VR and AR may rely on planning and control processes that are different from movements in UR, resulting in less efficient motor control. The current study involved participants performing manual pointing movements on Müller-Lyer illusion stimuli to examine the relative contributions of movement planning and online control in UR, VR, and AR. Compared to UR, movements in VR were slower but were equally variable with a comparable level of online control, whereas movements in AR showed comparable speed but exhibited higher variability and less online control. Further, movements in VR and AR demonstrated a greater illusory effect in endpoint accuracy relative to UR. These findings suggested that participants in VR adopted an active compensation strategy to overcome the impact of less efficient online control, whereas participants in AR did not. The findings that movement planning and execution in VR and AR are fundamentally different from those in UR provide valuable insights into the potential neural systems engaged during movements in different realities.
期刊介绍:
Behavioural Brain Research is an international, interdisciplinary journal dedicated to the publication of articles in the field of behavioural neuroscience, broadly defined. Contributions from the entire range of disciplines that comprise the neurosciences, behavioural sciences or cognitive sciences are appropriate, as long as the goal is to delineate the neural mechanisms underlying behaviour. Thus, studies may range from neurophysiological, neuroanatomical, neurochemical or neuropharmacological analysis of brain-behaviour relations, including the use of molecular genetic or behavioural genetic approaches, to studies that involve the use of brain imaging techniques, to neuroethological studies. Reports of original research, of major methodological advances, or of novel conceptual approaches are all encouraged. The journal will also consider critical reviews on selected topics.