{"title":"A bibliometric analysis of the Cheminformatics/QSAR literature (2000-2023) for predictive modeling in data science using the SCOPUS database.","authors":"Arkaprava Banerjee, Kunal Roy, Paola Gramatica","doi":"10.1007/s11030-024-11056-8","DOIUrl":null,"url":null,"abstract":"<p><p>A bibliometric analysis of the Cheminformatics/QSAR articles published in the present century (2000-2023) is presented based on a SCOPUS search made in October 2024 using a given set of search criteria. The obtained results of 52,415 documents against the specific query are analyzed based on the number of documents per year, contributions of different countries and Institutes in Cheminformatics/QSAR publications, the contributions of researchers based on the number of documents, appearance in the top-cited articles, h-index, composite c-score (ns), and the newly introduced q-score. Finally, a list of the top 50 Cheminformatics/QSAR researchers is presented. An analysis is also made for the content of the top-cited articles during the period 2000-2023 in comparison to those before 2000 to capture the trend of changes in the Cheminformatics/QSAR research. The limiting factors of any bibliometric analysis are also briefly presented.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-024-11056-8","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
A bibliometric analysis of the Cheminformatics/QSAR articles published in the present century (2000-2023) is presented based on a SCOPUS search made in October 2024 using a given set of search criteria. The obtained results of 52,415 documents against the specific query are analyzed based on the number of documents per year, contributions of different countries and Institutes in Cheminformatics/QSAR publications, the contributions of researchers based on the number of documents, appearance in the top-cited articles, h-index, composite c-score (ns), and the newly introduced q-score. Finally, a list of the top 50 Cheminformatics/QSAR researchers is presented. An analysis is also made for the content of the top-cited articles during the period 2000-2023 in comparison to those before 2000 to capture the trend of changes in the Cheminformatics/QSAR research. The limiting factors of any bibliometric analysis are also briefly presented.
期刊介绍:
Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including:
combinatorial chemistry and parallel synthesis;
small molecule libraries;
microwave synthesis;
flow synthesis;
fluorous synthesis;
diversity oriented synthesis (DOS);
nanoreactors;
click chemistry;
multiplex technologies;
fragment- and ligand-based design;
structure/function/SAR;
computational chemistry and molecular design;
chemoinformatics;
screening techniques and screening interfaces;
analytical and purification methods;
robotics, automation and miniaturization;
targeted libraries;
display libraries;
peptides and peptoids;
proteins;
oligonucleotides;
carbohydrates;
natural diversity;
new methods of library formulation and deconvolution;
directed evolution, origin of life and recombination;
search techniques, landscapes, random chemistry and more;