In this study, a novel hierarchical pore MIL-101(Cr) foam (HPF-MIL-101) was designed and prepared using the sacrificial template method with NaCl as the sacrificial template. This method involved grinding, heating, and washing the NaCl template to produce HPF-MIL-101, with PVDF as the binder and MIL-101(Cr) as the adsorbent. This preparation process is both straightforward and cost-effective, avoiding the use or generation of any organic reagents, thereby offering an environmentally sustainable approach for producing metal-organic framework (MOF) composites. The prepared HPF-MIL-101 exhibited excellent adsorption capabilities for both anionic dye (methyl orange, MO) and cationic dye (methylene blue, MB). The adsorption process followed a pseudo-second-order kinetic model and Friedrich isotherm model, indicating a multilayer adsorption. This is further supported by the Weber-Morris intraparticle diffusion model, which divided the adsorption process into three stages. Furthermore, the adsorption process was consistent with the Freundlich isotherm model, with a correlation coefficient (r) greater than 0.96. HPF-MIL-101 can also be used as an adsorbent for solid phase extraction (SPE). Therefore, an SPE method combined with high-performance liquid chromatography (HPLC) was developed using HPF-MIL-101 as the adsorbent to analyze five fluoroquinolones (FQs) in water samples. This analytical method showed good linearity in the range of 30-2000 ng·mL-1, with excellent linear correlation coefficient (r = 0.9991-0.9999), reasonable extraction recoveries ranging from 80.39 to 112.7 % (RSD ≤ 7.9 %), and low limits of detection (8-30 ng·mL-1). Overall, the results indicated that HPF-MIL-101 not only had a simple, environment-friendly, and pollution-free preparation process but also can be reused for enrichment and detection of trace FQs in water. Thus, HPF-MIL-101 exhibits immense application potential in environmental pollutant removal and also provides a valuable reference for the preparation and application of other MOF composites.
公司名称 | 产品信息 | 采购帮参考价格 |
---|---|---|
阿拉丁 |
Formic acid (FA)
|
|
阿拉丁 |
Ammonia monohydrate (NH3·H2O)
|
|
阿拉丁 |
Ammonia monohydrate (NH3·H2O)
|
|
阿拉丁 |
HPLC-grade Methanol (MeOH)
|
|
阿拉丁 |
HPLC-grade Methanol (MeOH)
|
|
阿拉丁 |
Formic acid (FA)
|