Optimization, physicochemical stability and in vivo study of alginate-chitosan composites as nanocarriers for low molecular weight angiotensin I-converting enzyme (ACE)-inhibitory peptide.

IF 2.6 3区 农林科学 Q2 FOOD SCIENCE & TECHNOLOGY
Shehu Muhammad Auwal, Siti Balqis Muhammad Ghanisma, Nazamid Saari
{"title":"Optimization, physicochemical stability and in vivo study of alginate-chitosan composites as nanocarriers for low molecular weight angiotensin I-converting enzyme (ACE)-inhibitory peptide.","authors":"Shehu Muhammad Auwal, Siti Balqis Muhammad Ghanisma, Nazamid Saari","doi":"10.38212/2224-6614.3522","DOIUrl":null,"url":null,"abstract":"<p><p>Chitosan and alginate, are non-toxic and biodegradable polymers used to enhance the stability of biotherapeutics by loading them into nanocarriers. In this study, the stone fish-derived low molecular weight peptide (Ala-Leu-Gly-Pro-Gln-Phe-Tyr), exhibited an in vitro ACE-inhibitory activity of 94.43 ± 2.05% and an IC<sub>50</sub> of 0.012 ± 0.001 mM. The peptide was encapsulated via ionic gelation with alginate followed by polyelectrolyte complexation with chitosan. The resulting ACE-inhibitory peptide-loaded alginate-chitosan nanoparticles (ACE-I-ALG-CS NPs) were optimized to achieve small particle size (212.60 nm) and high encapsulation efficiency (EE, 74.48%). This was based on an optimum chitosan concentration (0.420%w/v), homogenization speed (6000 rpm), and homogenization time (30 min) using Box Behnken experimental design (BBED). Characterization of the ACE-I-ALG-CS NPs revealed a spherical, monodispersed morphology with high physicochemical stability during storage at 2 °C, 7 °C, and 12 °C for 12 weeks. Moreover, the in vivo study conducted on spontaneously hypertensive rats (SHRs) demonstrated a significantly higher (p < 0.05) systolic blood pressure (SBP)-lowering effect of the ACE-I-ALG-CS NPs compared to captopril and unencapsulated peptide. Hence, alginate and chitosan can be used as biocompatible coating materials to enhance the stability and in vivo anti-hypertensive effect of Ala-Leu-Gly-Pro-Gln-Phe-Tyr through encapsulation, thereby making it potentially valuable for various applications in pharmaceuticals and food industry.</p>","PeriodicalId":358,"journal":{"name":"Journal of Food and Drug Analysis","volume":"32 3","pages":"358-370"},"PeriodicalIF":2.6000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11464040/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food and Drug Analysis","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.38212/2224-6614.3522","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Chitosan and alginate, are non-toxic and biodegradable polymers used to enhance the stability of biotherapeutics by loading them into nanocarriers. In this study, the stone fish-derived low molecular weight peptide (Ala-Leu-Gly-Pro-Gln-Phe-Tyr), exhibited an in vitro ACE-inhibitory activity of 94.43 ± 2.05% and an IC50 of 0.012 ± 0.001 mM. The peptide was encapsulated via ionic gelation with alginate followed by polyelectrolyte complexation with chitosan. The resulting ACE-inhibitory peptide-loaded alginate-chitosan nanoparticles (ACE-I-ALG-CS NPs) were optimized to achieve small particle size (212.60 nm) and high encapsulation efficiency (EE, 74.48%). This was based on an optimum chitosan concentration (0.420%w/v), homogenization speed (6000 rpm), and homogenization time (30 min) using Box Behnken experimental design (BBED). Characterization of the ACE-I-ALG-CS NPs revealed a spherical, monodispersed morphology with high physicochemical stability during storage at 2 °C, 7 °C, and 12 °C for 12 weeks. Moreover, the in vivo study conducted on spontaneously hypertensive rats (SHRs) demonstrated a significantly higher (p < 0.05) systolic blood pressure (SBP)-lowering effect of the ACE-I-ALG-CS NPs compared to captopril and unencapsulated peptide. Hence, alginate and chitosan can be used as biocompatible coating materials to enhance the stability and in vivo anti-hypertensive effect of Ala-Leu-Gly-Pro-Gln-Phe-Tyr through encapsulation, thereby making it potentially valuable for various applications in pharmaceuticals and food industry.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Food and Drug Analysis
Journal of Food and Drug Analysis 医学-食品科技
CiteScore
6.30
自引率
2.80%
发文量
36
审稿时长
3.8 months
期刊介绍: The journal aims to provide an international platform for scientists, researchers and academicians to promote, share and discuss new findings, current issues, and developments in the different areas of food and drug analysis. The scope of the Journal includes analytical methodologies and biological activities in relation to food, drugs, cosmetics and traditional Chinese medicine, as well as related disciplines of topical interest to public health professionals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信