The design and preparation of PDI modified NH2-MIL-101(Fe) for high efficiency removal of dimethoate in peroxymonosulfate system: Performance, mechanism, pathway and toxicity assessment.

IF 7.7 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Huixia Zhu, Huayi Zhu, Yu Tian, Xiaoxia Liang, Xia Yang
{"title":"The design and preparation of PDI modified NH<sub>2</sub>-MIL-101(Fe) for high efficiency removal of dimethoate in peroxymonosulfate system: Performance, mechanism, pathway and toxicity assessment.","authors":"Huixia Zhu, Huayi Zhu, Yu Tian, Xiaoxia Liang, Xia Yang","doi":"10.1016/j.envres.2024.120534","DOIUrl":null,"url":null,"abstract":"<p><p>The widespread use of organophosphorus pesticide dimethoate (DMT) in agriculture poses a threat to human health. In this work, the perylene tetracarboxylic diimide (PDI) modified NH<sub>2</sub>-MIL-101(Fe) (PDI/MIL) with strong covalent bond C(=O)-N were designed and prepared by a step solvothermal method. The synergistic effect between photocatalytic and peroxymonosulfate (PMS) activation for the DMT elimination over PDI/MIL was gained. Interestingly, PDI/MIL(1:10)/PMS showed boosting degradation efficiency (95.6%) for DMT under 18 min simulated sunlight irradiation. Its apparent reaction rate constant was 24.7 times higher than that of NH<sub>2</sub>-MIL-101(Fe)/PMS. Moreover, its reusability, stability and mineralization ability were evaluated, and a remarkable mineralization rate of 95.3% with 90 min was achieved. The enhanced activity were attributed to the formation of amide bond that exhibited superior charger transport ability and amount of produced active species. Combined the results obtained from the HPLC-MS and molecular structure characteristics of DMT analyzed by Fukui index, the degradation pathways were proposed. The toxicity of intermediates were predicted by Ecological Structure Activity Relationship (ECOSAR), Toxicity Estimation Software Tool (T.E.S.T.), and Vibrio fischeri experiments. Our work provided deep insights into the mechanisms of DMT degradation via photocatalysis-activated PMS over organic semiconductor modified metal organic frameworks.</p>","PeriodicalId":312,"journal":{"name":"Environmental Research","volume":" ","pages":"120534"},"PeriodicalIF":7.7000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.envres.2024.120534","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The widespread use of organophosphorus pesticide dimethoate (DMT) in agriculture poses a threat to human health. In this work, the perylene tetracarboxylic diimide (PDI) modified NH2-MIL-101(Fe) (PDI/MIL) with strong covalent bond C(=O)-N were designed and prepared by a step solvothermal method. The synergistic effect between photocatalytic and peroxymonosulfate (PMS) activation for the DMT elimination over PDI/MIL was gained. Interestingly, PDI/MIL(1:10)/PMS showed boosting degradation efficiency (95.6%) for DMT under 18 min simulated sunlight irradiation. Its apparent reaction rate constant was 24.7 times higher than that of NH2-MIL-101(Fe)/PMS. Moreover, its reusability, stability and mineralization ability were evaluated, and a remarkable mineralization rate of 95.3% with 90 min was achieved. The enhanced activity were attributed to the formation of amide bond that exhibited superior charger transport ability and amount of produced active species. Combined the results obtained from the HPLC-MS and molecular structure characteristics of DMT analyzed by Fukui index, the degradation pathways were proposed. The toxicity of intermediates were predicted by Ecological Structure Activity Relationship (ECOSAR), Toxicity Estimation Software Tool (T.E.S.T.), and Vibrio fischeri experiments. Our work provided deep insights into the mechanisms of DMT degradation via photocatalysis-activated PMS over organic semiconductor modified metal organic frameworks.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Research
Environmental Research 环境科学-公共卫生、环境卫生与职业卫生
CiteScore
12.60
自引率
8.40%
发文量
2480
审稿时长
4.7 months
期刊介绍: The Environmental Research journal presents a broad range of interdisciplinary research, focused on addressing worldwide environmental concerns and featuring innovative findings. Our publication strives to explore relevant anthropogenic issues across various environmental sectors, showcasing practical applications in real-life settings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信