{"title":"Decoding complex transport patterns in flow-induced autologous chemotaxis of multicellular systems.","authors":"Aditya Shankar Paspunurwar, Hector Gomez","doi":"10.1007/s10237-024-01905-8","DOIUrl":null,"url":null,"abstract":"<p><p>Cell migration via autologous chemotaxis in the presence of interstitial fluid flow is important in cancer metastasis and embryonic development. Despite significant recent progress, our understanding of flow-induced autologous chemotaxis of multicellular systems remains poor. The literature presents inconsistent findings regarding the effectiveness of collective autologous chemotaxis of densely packed cells under interstitial fluid flow. Here, we present a high-fidelity computational model to analyze the migration of multicellular systems performing autologous chemotaxis in the presence of interstitial fluid flow. Our simulations show that the details of the complex transport dynamics of the chemoattractant and fluid flow patterns that occur in the extracellular space, previously overlooked, are essential to understand this cell migration mechanism. We find that, although flow-induced autologous chemotaxis is a robust migration mechanism for individual cells, the cell-cell interactions that occur in multicellular systems render autologous chemotaxis an inefficient mechanism of collective cell migration. Our results offer new perspectives on the potential role of autologous chemotaxis in the tumor microenvironment, where fluid flow is an important modulator of transport.</p>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomechanics and Modeling in Mechanobiology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10237-024-01905-8","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Cell migration via autologous chemotaxis in the presence of interstitial fluid flow is important in cancer metastasis and embryonic development. Despite significant recent progress, our understanding of flow-induced autologous chemotaxis of multicellular systems remains poor. The literature presents inconsistent findings regarding the effectiveness of collective autologous chemotaxis of densely packed cells under interstitial fluid flow. Here, we present a high-fidelity computational model to analyze the migration of multicellular systems performing autologous chemotaxis in the presence of interstitial fluid flow. Our simulations show that the details of the complex transport dynamics of the chemoattractant and fluid flow patterns that occur in the extracellular space, previously overlooked, are essential to understand this cell migration mechanism. We find that, although flow-induced autologous chemotaxis is a robust migration mechanism for individual cells, the cell-cell interactions that occur in multicellular systems render autologous chemotaxis an inefficient mechanism of collective cell migration. Our results offer new perspectives on the potential role of autologous chemotaxis in the tumor microenvironment, where fluid flow is an important modulator of transport.
期刊介绍:
Mechanics regulates biological processes at the molecular, cellular, tissue, organ, and organism levels. A goal of this journal is to promote basic and applied research that integrates the expanding knowledge-bases in the allied fields of biomechanics and mechanobiology. Approaches may be experimental, theoretical, or computational; they may address phenomena at the nano, micro, or macrolevels. Of particular interest are investigations that
(1) quantify the mechanical environment in which cells and matrix function in health, disease, or injury,
(2) identify and quantify mechanosensitive responses and their mechanisms,
(3) detail inter-relations between mechanics and biological processes such as growth, remodeling, adaptation, and repair, and
(4) report discoveries that advance therapeutic and diagnostic procedures.
Especially encouraged are analytical and computational models based on solid mechanics, fluid mechanics, or thermomechanics, and their interactions; also encouraged are reports of new experimental methods that expand measurement capabilities and new mathematical methods that facilitate analysis.