Genomic-Guided Conservation Actions to Restore the Most Endangered Conifer in the Mediterranean Basin.

IF 4.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
José Carlos Del Valle, Montserrat Arista, Carmen Benítez-Benítez, Pedro Luis Ortiz, Francisco J Jiménez-López, Anass Terrab, Francisco Balao
{"title":"Genomic-Guided Conservation Actions to Restore the Most Endangered Conifer in the Mediterranean Basin.","authors":"José Carlos Del Valle, Montserrat Arista, Carmen Benítez-Benítez, Pedro Luis Ortiz, Francisco J Jiménez-López, Anass Terrab, Francisco Balao","doi":"10.1111/mec.17605","DOIUrl":null,"url":null,"abstract":"<p><p>Species with extremely small population sizes are critically endangered because of reduced genetic diversity, increased inbreeding and hybridisation threats. Genomic tools significantly advance conservation by revealing genetic insights into endangered species, notably in monitoring frameworks. Sicilian fir (Abies nebrodensis) is the most endangered conifer in Europe with only 30 adult trees in an 84-ha area. Using 20,824 SNPs from RAD-seq, employing genome assembly and a custom 120 SNP-array, we evaluated genetic diversity, mating patterns, and effective population size in adult trees, 118 natural seedlings, and 2064 nursery seedlings from past conservation actions. We assessed introgression from neighbouring non-native fir plantations (~6%) and established an intra-population assisted gene flow (AGF) program selecting the most genetically dissimilar individuals and investigating the outcome through simulations. Genomic analysis unveiled significant genetic diversity among adult Sicilian firs, comparable to non-endangered Mediterranean firs with larger populations. However, the genetic diversity of the forthcoming generation declined due to high self-fertilisation, leading to marked inbreeding (F<sub>IS</sub> = 0.38) and an alarmingly low effective population size (N<sub>e</sub> = 6). Nursery seedling monitoring revealed similar selfing rates and introgression (~2%) from non-native firs. Although intra-population AGF could help to mitigate genetic loss, it may not alleviate the species vulnerability to imminent environmental challenges, perpetuating the risk of an extinction vortex. Hence, investigating the impact of Sicilian fir population decline and selfing on inbreeding depression, along with exploring the potential of hybrids for genetic load alleviation and future adaptation, is crucial for effective conservation strategies.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":" ","pages":"e17605"},"PeriodicalIF":4.5000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/mec.17605","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Species with extremely small population sizes are critically endangered because of reduced genetic diversity, increased inbreeding and hybridisation threats. Genomic tools significantly advance conservation by revealing genetic insights into endangered species, notably in monitoring frameworks. Sicilian fir (Abies nebrodensis) is the most endangered conifer in Europe with only 30 adult trees in an 84-ha area. Using 20,824 SNPs from RAD-seq, employing genome assembly and a custom 120 SNP-array, we evaluated genetic diversity, mating patterns, and effective population size in adult trees, 118 natural seedlings, and 2064 nursery seedlings from past conservation actions. We assessed introgression from neighbouring non-native fir plantations (~6%) and established an intra-population assisted gene flow (AGF) program selecting the most genetically dissimilar individuals and investigating the outcome through simulations. Genomic analysis unveiled significant genetic diversity among adult Sicilian firs, comparable to non-endangered Mediterranean firs with larger populations. However, the genetic diversity of the forthcoming generation declined due to high self-fertilisation, leading to marked inbreeding (FIS = 0.38) and an alarmingly low effective population size (Ne = 6). Nursery seedling monitoring revealed similar selfing rates and introgression (~2%) from non-native firs. Although intra-population AGF could help to mitigate genetic loss, it may not alleviate the species vulnerability to imminent environmental challenges, perpetuating the risk of an extinction vortex. Hence, investigating the impact of Sicilian fir population decline and selfing on inbreeding depression, along with exploring the potential of hybrids for genetic load alleviation and future adaptation, is crucial for effective conservation strategies.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Ecology
Molecular Ecology 生物-进化生物学
CiteScore
8.40
自引率
10.20%
发文量
472
审稿时长
1 months
期刊介绍: Molecular Ecology publishes papers that utilize molecular genetic techniques to address consequential questions in ecology, evolution, behaviour and conservation. Studies may employ neutral markers for inference about ecological and evolutionary processes or examine ecologically important genes and their products directly. We discourage papers that are primarily descriptive and are relevant only to the taxon being studied. Papers reporting on molecular marker development, molecular diagnostics, barcoding, or DNA taxonomy, or technical methods should be re-directed to our sister journal, Molecular Ecology Resources. Likewise, papers with a strongly applied focus should be submitted to Evolutionary Applications. Research areas of interest to Molecular Ecology include: * population structure and phylogeography * reproductive strategies * relatedness and kin selection * sex allocation * population genetic theory * analytical methods development * conservation genetics * speciation genetics * microbial biodiversity * evolutionary dynamics of QTLs * ecological interactions * molecular adaptation and environmental genomics * impact of genetically modified organisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信