Living in Their Heyday: Iron-Oxidizing Bacteria Bloomed in Shallow-Marine, Subtidal Environments at ca. 1.88 Ga

IF 2.7 2区 地球科学 Q2 BIOLOGY
Geobiology Pub Date : 2024-12-05 DOI:10.1111/gbi.70003
Alex Kovalick, Andy W. Heard, Aleisha C. Johnson, Clara S. Chan, Luke Ootes, Sune G. Nielsen, Nicolas Dauphas, Bodo Weber, Andrey Bekker
{"title":"Living in Their Heyday: Iron-Oxidizing Bacteria Bloomed in Shallow-Marine, Subtidal Environments at ca. 1.88 Ga","authors":"Alex Kovalick,&nbsp;Andy W. Heard,&nbsp;Aleisha C. Johnson,&nbsp;Clara S. Chan,&nbsp;Luke Ootes,&nbsp;Sune G. Nielsen,&nbsp;Nicolas Dauphas,&nbsp;Bodo Weber,&nbsp;Andrey Bekker","doi":"10.1111/gbi.70003","DOIUrl":null,"url":null,"abstract":"<p>The majority of large iron formations (IFs) were deposited leading up to Earth's great oxidation episode (GOE). Following the GOE, IF deposition decreased for almost 500 Myr. Subsequently, around 1.88 Ga, there was widespread deposition of shallow-water granular iron formations (GIF) within a geologically short time interval, which has been linked to enhanced iron (Fe) supply to seawater from submarine hydrothermal venting associated with the emplacement of large igneous provinces. Previous studies of Fe-rich, microfossil-bearing stromatolites from the ca. 1.88 Ga Gunflint Formation on the Superior craton suggested direct microbial oxidation of seawater Fe<sup>2+</sup><sub>(aq)</sub> by microaerophilic, Fe-oxidizing bacteria (FeOB), as a driver of GIF deposition. Although Fe-rich, microfossil-bearing stromatolites are common in 1.88 Ga GIF deposits on several cratons, combined paleontological and geochemical studies have been applied only to the Gunflint Formation. Here, we present new paleontological and geochemical observations for the ca. 1.89 Ga Gibraltar Formation GIFs from the East Arm of the Great Slave Lake, Northwest Territories, Canada. Fossil morphology, Rare Earth element (REE) concentrations, and Fe isotopic compositions support Fe oxidation by FeOB at a redoxcline poised above the fair-weather wave base. Small positive Eu anomalies and positive ε<sub>Nd</sub> (1.89 Ga) values suggest upwelling of deep, Fe-rich, hydrothermally influenced seawater. While high [Fe<sup>2+</sup><sub>(aq)</sub>] combined with low atmospheric pO<sub>2</sub> in the late Paleoproterozoic would have provided optimal conditions in shallow oceans for FeOB to precipitate Fe oxyhydroxide, these redox conditions were likely toxic to cyanobacteria. As long as local O<sub>2</sub> production by cyanobacteria was strongly diminished, FeOB would have had to rely on an atmospheric O<sub>2</sub> supply by diffusion to shallow seawater to oxidize Fe<sup>2+</sup><sub>(aq)</sub>. Using a 1-D reaction dispersion model, we calculate [O<sub>2(aq)</sub>] sufficient to deplete an upwelling Fe<sup>2+</sup><sub>(aq)</sub> source. Our results for GIF deposition are consistent with late Paleoproterozoic pO<sub>2</sub> estimates of ~1%–10% PAL and constraints for metabolic [O<sub>2(aq)</sub>] requirements for modern FeOB. Widespread GIF deposition at ca. 1.88 Ga appears to mark a temporally restricted episode of optimal biogeochemical conditions in Earth's history when increased hydrothermal Fe<sup>2+</sup><sub>(aq)</sub> sourced from the deep oceans, in combination with low mid-Paleoproterozoic atmospheric pO<sub>2</sub>, globally satisfied FeOB metabolic Fe<sup>2+</sup><sub>(aq)</sub> and O<sub>2(aq)</sub> requirements in shallow-marine subtidal environments above the fair-weather wave base.</p>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"22 6","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11621254/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geobiology","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gbi.70003","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The majority of large iron formations (IFs) were deposited leading up to Earth's great oxidation episode (GOE). Following the GOE, IF deposition decreased for almost 500 Myr. Subsequently, around 1.88 Ga, there was widespread deposition of shallow-water granular iron formations (GIF) within a geologically short time interval, which has been linked to enhanced iron (Fe) supply to seawater from submarine hydrothermal venting associated with the emplacement of large igneous provinces. Previous studies of Fe-rich, microfossil-bearing stromatolites from the ca. 1.88 Ga Gunflint Formation on the Superior craton suggested direct microbial oxidation of seawater Fe2+(aq) by microaerophilic, Fe-oxidizing bacteria (FeOB), as a driver of GIF deposition. Although Fe-rich, microfossil-bearing stromatolites are common in 1.88 Ga GIF deposits on several cratons, combined paleontological and geochemical studies have been applied only to the Gunflint Formation. Here, we present new paleontological and geochemical observations for the ca. 1.89 Ga Gibraltar Formation GIFs from the East Arm of the Great Slave Lake, Northwest Territories, Canada. Fossil morphology, Rare Earth element (REE) concentrations, and Fe isotopic compositions support Fe oxidation by FeOB at a redoxcline poised above the fair-weather wave base. Small positive Eu anomalies and positive εNd (1.89 Ga) values suggest upwelling of deep, Fe-rich, hydrothermally influenced seawater. While high [Fe2+(aq)] combined with low atmospheric pO2 in the late Paleoproterozoic would have provided optimal conditions in shallow oceans for FeOB to precipitate Fe oxyhydroxide, these redox conditions were likely toxic to cyanobacteria. As long as local O2 production by cyanobacteria was strongly diminished, FeOB would have had to rely on an atmospheric O2 supply by diffusion to shallow seawater to oxidize Fe2+(aq). Using a 1-D reaction dispersion model, we calculate [O2(aq)] sufficient to deplete an upwelling Fe2+(aq) source. Our results for GIF deposition are consistent with late Paleoproterozoic pO2 estimates of ~1%–10% PAL and constraints for metabolic [O2(aq)] requirements for modern FeOB. Widespread GIF deposition at ca. 1.88 Ga appears to mark a temporally restricted episode of optimal biogeochemical conditions in Earth's history when increased hydrothermal Fe2+(aq) sourced from the deep oceans, in combination with low mid-Paleoproterozoic atmospheric pO2, globally satisfied FeOB metabolic Fe2+(aq) and O2(aq) requirements in shallow-marine subtidal environments above the fair-weather wave base.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Geobiology
Geobiology 生物-地球科学综合
CiteScore
6.80
自引率
5.40%
发文量
56
审稿时长
3 months
期刊介绍: The field of geobiology explores the relationship between life and the Earth''s physical and chemical environment. Geobiology, launched in 2003, aims to provide a natural home for geobiological research, allowing the cross-fertilization of critical ideas, and promoting cooperation and advancement in this emerging field. We also aim to provide you with a forum for the rapid publication of your results in an international journal of high standing. We are particularly interested in papers crossing disciplines and containing both geological and biological elements, emphasizing the co-evolutionary interactions between life and its physical environment over geological time. Geobiology invites submission of high-quality articles in the following areas: Origins and evolution of life Co-evolution of the atmosphere, hydrosphere and biosphere The sedimentary rock record and geobiology of critical intervals Paleobiology and evolutionary ecology Biogeochemistry and global elemental cycles Microbe-mineral interactions Biomarkers Molecular ecology and phylogenetics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信