{"title":"A discrete choice latent class method for capturing unobserved heterogeneity in cyclist crossing behaviour at crosswalks.","authors":"Rulla Al-Haideri, Adam Weiss, Karim Ismail","doi":"10.1016/j.aap.2024.107850","DOIUrl":null,"url":null,"abstract":"<p><p>Conflicts between cyclists and motorized vehicles at crosswalks often lead to severe collisions. The varied behaviour of cyclists at these crossings introduces unobserved heterogeneity. Despite this, there is a notable research gap in studying the cyclist behaviour at roundabout crosswalks. To address this gap, we propose a discrete choice latent class method to capture the multi-level latent heterogeneity in cyclists' crossing behaviour at roundabout crosswalks. Latent heterogeneity can be captured at multiple levels: site-level, interaction-level, choice-attribute level, and individual-level. This method, rooted in behavioural theory, aims to provide a deeper understanding of cyclists' crossing decisions, enhancing safety measures at these intersections. We present an application of the proposed method to two publicly available drone datasets of naturalistic road user trajectories at roundabouts, including 8 roundabout sites that exhibit some level of similarity to minimize site heterogeneity. We capture the latent heterogeneity in the cyclists' membership to a distinct behavioural class at two levels using these datasets: the individual level, represented by the speed of the cyclist as they enter the crosswalk, and the interaction level, defined by the presence of vehicles approaching the cyclist. Our findings align with previous studies that emphasize the significance of the initial speed variable in influencing cyclists' subsequent behaviour and decisions. We identified two distinct classes of cyclists. We hypothesize that Class 1 cyclists, whom we refer to as passers, tend to bypass or overtake other road users at the crosswalk, especially in the absence of vehicles, prioritizing speed and efficiency. We also hypothesize that Class 2 cyclists, referred to as followers, exhibit more cautious behaviour, preferring to maintain a steady pace and avoid overtaking, particularly when vehicles are present. The proposed latent class model effectively captures this behavioural distinction, offering a more granular view of cyclists' decision-making processes at roundabout crosswalks. A key finding is that the discrete choice model with a latent class structure outperforms the basic model without it, despite having more degrees of freedom, as it achieves a lower BIC and AIC but improved model fit statistic. This demonstrates that latent heterogeneity can be effectively captured, leading to improved predictions and outperforming the basic non-latent class model. Classifying cyclists into distinct behavioural classes not only enhances cyclist safety at crosswalks but also provides valuable insights for the development of autonomous vehicle-cyclist interactions.</p>","PeriodicalId":6926,"journal":{"name":"Accident; analysis and prevention","volume":"211 ","pages":"107850"},"PeriodicalIF":5.7000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accident; analysis and prevention","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.aap.2024.107850","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ERGONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Conflicts between cyclists and motorized vehicles at crosswalks often lead to severe collisions. The varied behaviour of cyclists at these crossings introduces unobserved heterogeneity. Despite this, there is a notable research gap in studying the cyclist behaviour at roundabout crosswalks. To address this gap, we propose a discrete choice latent class method to capture the multi-level latent heterogeneity in cyclists' crossing behaviour at roundabout crosswalks. Latent heterogeneity can be captured at multiple levels: site-level, interaction-level, choice-attribute level, and individual-level. This method, rooted in behavioural theory, aims to provide a deeper understanding of cyclists' crossing decisions, enhancing safety measures at these intersections. We present an application of the proposed method to two publicly available drone datasets of naturalistic road user trajectories at roundabouts, including 8 roundabout sites that exhibit some level of similarity to minimize site heterogeneity. We capture the latent heterogeneity in the cyclists' membership to a distinct behavioural class at two levels using these datasets: the individual level, represented by the speed of the cyclist as they enter the crosswalk, and the interaction level, defined by the presence of vehicles approaching the cyclist. Our findings align with previous studies that emphasize the significance of the initial speed variable in influencing cyclists' subsequent behaviour and decisions. We identified two distinct classes of cyclists. We hypothesize that Class 1 cyclists, whom we refer to as passers, tend to bypass or overtake other road users at the crosswalk, especially in the absence of vehicles, prioritizing speed and efficiency. We also hypothesize that Class 2 cyclists, referred to as followers, exhibit more cautious behaviour, preferring to maintain a steady pace and avoid overtaking, particularly when vehicles are present. The proposed latent class model effectively captures this behavioural distinction, offering a more granular view of cyclists' decision-making processes at roundabout crosswalks. A key finding is that the discrete choice model with a latent class structure outperforms the basic model without it, despite having more degrees of freedom, as it achieves a lower BIC and AIC but improved model fit statistic. This demonstrates that latent heterogeneity can be effectively captured, leading to improved predictions and outperforming the basic non-latent class model. Classifying cyclists into distinct behavioural classes not only enhances cyclist safety at crosswalks but also provides valuable insights for the development of autonomous vehicle-cyclist interactions.
期刊介绍:
Accident Analysis & Prevention provides wide coverage of the general areas relating to accidental injury and damage, including the pre-injury and immediate post-injury phases. Published papers deal with medical, legal, economic, educational, behavioral, theoretical or empirical aspects of transportation accidents, as well as with accidents at other sites. Selected topics within the scope of the Journal may include: studies of human, environmental and vehicular factors influencing the occurrence, type and severity of accidents and injury; the design, implementation and evaluation of countermeasures; biomechanics of impact and human tolerance limits to injury; modelling and statistical analysis of accident data; policy, planning and decision-making in safety.