A 3D bioprinted adhesive tissue engineering scaffold to repair ischemic heart injury.

IF 5.8 3区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS
Shuai Chen, Lindan Tan, Vahid Serpooshan, Haifeng Chen
{"title":"A 3D bioprinted adhesive tissue engineering scaffold to repair ischemic heart injury.","authors":"Shuai Chen, Lindan Tan, Vahid Serpooshan, Haifeng Chen","doi":"10.1039/d4bm00988f","DOIUrl":null,"url":null,"abstract":"<p><p>Adhesive tissue engineering scaffold (ATES) devices can be secured on tissues by relying on their intrinsic adhesive properties, hence, avoiding the complications such as host tissue/scaffold damage that are associated with conventional scaffold fixation methods like suturing or bioglue. This study introduces a new generation of three-dimensional (3D) bioprinted ATES systems for use as cardiac patches to regenerate the adult human heart. Tyramine-modified methacrylated hyaluronic acid (HAMA-tyr), gelatin methacrylate (GelMA), and gelatin were used to create the hybrid bioink formulation with self-adhesive properties. ATESs were bioprinted and further modified to improve the adhesion properties. In-depth characterization of printing fidelity, pore size, mechanical properties, swelling behavior, as well as biocompatibility was used to create ATESs with optimal biological function. Following <i>in vitro</i> testing, the ATESs were tested in a mouse model of myocardial infarction to study the scaffold adhesive strength in biological milieu. The method developed in this study can be used to manufacture off-the-shelf ATESs with complex cellular and extracellular architecture, with robust potential for clinical translation into a variety of personalized tissue engineering and regenerative medicine applications.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1039/d4bm00988f","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Adhesive tissue engineering scaffold (ATES) devices can be secured on tissues by relying on their intrinsic adhesive properties, hence, avoiding the complications such as host tissue/scaffold damage that are associated with conventional scaffold fixation methods like suturing or bioglue. This study introduces a new generation of three-dimensional (3D) bioprinted ATES systems for use as cardiac patches to regenerate the adult human heart. Tyramine-modified methacrylated hyaluronic acid (HAMA-tyr), gelatin methacrylate (GelMA), and gelatin were used to create the hybrid bioink formulation with self-adhesive properties. ATESs were bioprinted and further modified to improve the adhesion properties. In-depth characterization of printing fidelity, pore size, mechanical properties, swelling behavior, as well as biocompatibility was used to create ATESs with optimal biological function. Following in vitro testing, the ATESs were tested in a mouse model of myocardial infarction to study the scaffold adhesive strength in biological milieu. The method developed in this study can be used to manufacture off-the-shelf ATESs with complex cellular and extracellular architecture, with robust potential for clinical translation into a variety of personalized tissue engineering and regenerative medicine applications.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomaterials Science
Biomaterials Science MATERIALS SCIENCE, BIOMATERIALS-
CiteScore
11.50
自引率
4.50%
发文量
556
期刊介绍: Biomaterials Science is an international high impact journal exploring the science of biomaterials and their translation towards clinical use. Its scope encompasses new concepts in biomaterials design, studies into the interaction of biomaterials with the body, and the use of materials to answer fundamental biological questions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信