Shuai Chen, Lindan Tan, Vahid Serpooshan, Haifeng Chen
{"title":"A 3D bioprinted adhesive tissue engineering scaffold to repair ischemic heart injury.","authors":"Shuai Chen, Lindan Tan, Vahid Serpooshan, Haifeng Chen","doi":"10.1039/d4bm00988f","DOIUrl":null,"url":null,"abstract":"<p><p>Adhesive tissue engineering scaffold (ATES) devices can be secured on tissues by relying on their intrinsic adhesive properties, hence, avoiding the complications such as host tissue/scaffold damage that are associated with conventional scaffold fixation methods like suturing or bioglue. This study introduces a new generation of three-dimensional (3D) bioprinted ATES systems for use as cardiac patches to regenerate the adult human heart. Tyramine-modified methacrylated hyaluronic acid (HAMA-tyr), gelatin methacrylate (GelMA), and gelatin were used to create the hybrid bioink formulation with self-adhesive properties. ATESs were bioprinted and further modified to improve the adhesion properties. In-depth characterization of printing fidelity, pore size, mechanical properties, swelling behavior, as well as biocompatibility was used to create ATESs with optimal biological function. Following <i>in vitro</i> testing, the ATESs were tested in a mouse model of myocardial infarction to study the scaffold adhesive strength in biological milieu. The method developed in this study can be used to manufacture off-the-shelf ATESs with complex cellular and extracellular architecture, with robust potential for clinical translation into a variety of personalized tissue engineering and regenerative medicine applications.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1039/d4bm00988f","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Adhesive tissue engineering scaffold (ATES) devices can be secured on tissues by relying on their intrinsic adhesive properties, hence, avoiding the complications such as host tissue/scaffold damage that are associated with conventional scaffold fixation methods like suturing or bioglue. This study introduces a new generation of three-dimensional (3D) bioprinted ATES systems for use as cardiac patches to regenerate the adult human heart. Tyramine-modified methacrylated hyaluronic acid (HAMA-tyr), gelatin methacrylate (GelMA), and gelatin were used to create the hybrid bioink formulation with self-adhesive properties. ATESs were bioprinted and further modified to improve the adhesion properties. In-depth characterization of printing fidelity, pore size, mechanical properties, swelling behavior, as well as biocompatibility was used to create ATESs with optimal biological function. Following in vitro testing, the ATESs were tested in a mouse model of myocardial infarction to study the scaffold adhesive strength in biological milieu. The method developed in this study can be used to manufacture off-the-shelf ATESs with complex cellular and extracellular architecture, with robust potential for clinical translation into a variety of personalized tissue engineering and regenerative medicine applications.
期刊介绍:
Biomaterials Science is an international high impact journal exploring the science of biomaterials and their translation towards clinical use. Its scope encompasses new concepts in biomaterials design, studies into the interaction of biomaterials with the body, and the use of materials to answer fundamental biological questions.