Guanjie Huang, Jianzhong Ma, Jie Chen, Wenbo Zhang, Qianqian Fan, Buxing Han
{"title":"Controllable Strategy of Metal-Organic Framework Structural Stability: Regulation of Ligand Electronegativity by Esterification.","authors":"Guanjie Huang, Jianzhong Ma, Jie Chen, Wenbo Zhang, Qianqian Fan, Buxing Han","doi":"10.1002/advs.202413853","DOIUrl":null,"url":null,"abstract":"<p><p>Structural stability of metal-organic framework (MOF) is crucial for their application, and thus it is of great significance to construct MOFs with controllable structural stability. Herein, a strategy based on adjusting the electronic environment of ligands to regulate the structure stability of MOF is proposed. Briefly, a novel Zr-MOF (Zr-TA) with hydroxyl groups is synthesized. The hydroxyl groups are esterified to obtain ester groups with stronger electronegativity, which can weaken the strength of coordination between metal ion and ligand, thereby regulating the structure stability of the Zr-MOF. Notably, this strategy can achieve controllable adjustment of the structure by adding modifiers at the appropriate time. In this work, this strategy is used to greatly improving the binding ability of MOF and collagen fibers, the hydrothermal stability of crosslinked collagen fibers is enhanced by 82.6%. Surprisingly, this strategy can also be applied to other application fields that require dynamic changes in structural stability of MOF. It will open up a new pathway for controlling the structural stability and application performance of MOF.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2413853"},"PeriodicalIF":14.3000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202413853","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Structural stability of metal-organic framework (MOF) is crucial for their application, and thus it is of great significance to construct MOFs with controllable structural stability. Herein, a strategy based on adjusting the electronic environment of ligands to regulate the structure stability of MOF is proposed. Briefly, a novel Zr-MOF (Zr-TA) with hydroxyl groups is synthesized. The hydroxyl groups are esterified to obtain ester groups with stronger electronegativity, which can weaken the strength of coordination between metal ion and ligand, thereby regulating the structure stability of the Zr-MOF. Notably, this strategy can achieve controllable adjustment of the structure by adding modifiers at the appropriate time. In this work, this strategy is used to greatly improving the binding ability of MOF and collagen fibers, the hydrothermal stability of crosslinked collagen fibers is enhanced by 82.6%. Surprisingly, this strategy can also be applied to other application fields that require dynamic changes in structural stability of MOF. It will open up a new pathway for controlling the structural stability and application performance of MOF.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.