A "Janus" Zwitterionic Hydrogel Patch for Tissue Repair and Prevention of Post-Operative Adhesions.

IF 10 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Jing Zhang, Xinxin Luo, Jiaqi Liu, Minmin Wu, Jie Feng, Jia Zhou
{"title":"A \"Janus\" Zwitterionic Hydrogel Patch for Tissue Repair and Prevention of Post-Operative Adhesions.","authors":"Jing Zhang, Xinxin Luo, Jiaqi Liu, Minmin Wu, Jie Feng, Jia Zhou","doi":"10.1002/adhm.202404082","DOIUrl":null,"url":null,"abstract":"<p><p>Anti-peritoneal adhesions (PA) are very important after abdominal surgery for that PA often leads to other medical problems and imposes a huge financial burden on the national healthcare system. In this work, a \"Janus\" zwitterionic hydrogel patch where one side can adhere firmly to the tissue, while the other side has anti-fouling properties and has little interaction with the surrounding tissue has been developed. The \"Janus\" hydrogel patch is prepared by in situ formation of a bonding polymer layer poly(acrylic-co-N-hydroxysuccinimide acrylate) on one side of zwitterionic hydrogel. The mechanical, swelling, adhesion, biodegradability and biocompatibility tests are performed to study the function of \"Janus\" hydrogel patch to prevent wound adhesion and rapid repair. It is found that the adhesive side of the hydrogel patch has stable adhesion to tissues, avoiding the slippage faced by many commercial anti-adhesion gels in the body. The other zwitterionic side can resist proteins and fibroblasts and prevent external interactions or adhesion with other tissues. This convenient and effective method provides a new idea for the design of postoperative anti-adhesion materials and broadens the application of hydrogels in the biomedical field.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2404082"},"PeriodicalIF":10.0000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202404082","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Anti-peritoneal adhesions (PA) are very important after abdominal surgery for that PA often leads to other medical problems and imposes a huge financial burden on the national healthcare system. In this work, a "Janus" zwitterionic hydrogel patch where one side can adhere firmly to the tissue, while the other side has anti-fouling properties and has little interaction with the surrounding tissue has been developed. The "Janus" hydrogel patch is prepared by in situ formation of a bonding polymer layer poly(acrylic-co-N-hydroxysuccinimide acrylate) on one side of zwitterionic hydrogel. The mechanical, swelling, adhesion, biodegradability and biocompatibility tests are performed to study the function of "Janus" hydrogel patch to prevent wound adhesion and rapid repair. It is found that the adhesive side of the hydrogel patch has stable adhesion to tissues, avoiding the slippage faced by many commercial anti-adhesion gels in the body. The other zwitterionic side can resist proteins and fibroblasts and prevent external interactions or adhesion with other tissues. This convenient and effective method provides a new idea for the design of postoperative anti-adhesion materials and broadens the application of hydrogels in the biomedical field.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Healthcare Materials
Advanced Healthcare Materials 工程技术-生物材料
CiteScore
14.40
自引率
3.00%
发文量
600
审稿时长
1.8 months
期刊介绍: Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信