Evaluating the Importance of Conformers for Understanding the Vacuum-Ultraviolet Spectra of Oxiranes: Experiment and Theory.

IF 2.7 2区 化学 Q3 CHEMISTRY, PHYSICAL
The Journal of Physical Chemistry A Pub Date : 2024-12-19 Epub Date: 2024-12-06 DOI:10.1021/acs.jpca.4c04391
Ian T Beck, Erica C Mitchell, Annabelle Webb Hill, Justin M Turney, Brandon Rotavera, Henry F Schaefer
{"title":"Evaluating the Importance of Conformers for Understanding the Vacuum-Ultraviolet Spectra of Oxiranes: Experiment and Theory.","authors":"Ian T Beck, Erica C Mitchell, Annabelle Webb Hill, Justin M Turney, Brandon Rotavera, Henry F Schaefer","doi":"10.1021/acs.jpca.4c04391","DOIUrl":null,"url":null,"abstract":"<p><p>Vacuum-ultraviolet (VUV) absorption spectroscopy enables electronic transitions that offer the unambiguous identification of molecules. As target molecules become more complex, multifunctional species present a great challenge to both experimental and computational spectroscopy. This research reports both experimental and theoretical studies of oxiranes. Computationally, the nuclear ensemble approach has been used to accurately predict experimental spectra for a variety of molecules. However, this approach incurs great computational cost, as ensembles generally consist of thousands of geometries. The present study aims to drastically reduce the ensemble by evaluating the significance of the conformers to the predicted spectra. This approach was applied to 11 substituted oxiranes using the Conformer Rotamer Ensemble Sampling Tool (CREST) of Grimme to generate an ensemble of unique conformers determined by their Boltzmann populations. Five TD-DFT functionals (BMK, CAM-B3LYP, M06-2X, MN15, ωB97X-D) and EOM-CCSD were used to simulate the spectrum of each substituted oxirane ensemble. Computed spectra were then compared to the experiment using both qualitative and quantitative metrics. Based on these metrics, it was observed that certain conformers may not be necessary to characterize this set of oxiranes despite the temperature (323 K) of the experiment. A single conformer can then be used with TD-DFT and EOM-CCSD to replicate the experimental spectra of these medium-sized combustion species.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":" ","pages":"10906-10920"},"PeriodicalIF":2.7000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.4c04391","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Vacuum-ultraviolet (VUV) absorption spectroscopy enables electronic transitions that offer the unambiguous identification of molecules. As target molecules become more complex, multifunctional species present a great challenge to both experimental and computational spectroscopy. This research reports both experimental and theoretical studies of oxiranes. Computationally, the nuclear ensemble approach has been used to accurately predict experimental spectra for a variety of molecules. However, this approach incurs great computational cost, as ensembles generally consist of thousands of geometries. The present study aims to drastically reduce the ensemble by evaluating the significance of the conformers to the predicted spectra. This approach was applied to 11 substituted oxiranes using the Conformer Rotamer Ensemble Sampling Tool (CREST) of Grimme to generate an ensemble of unique conformers determined by their Boltzmann populations. Five TD-DFT functionals (BMK, CAM-B3LYP, M06-2X, MN15, ωB97X-D) and EOM-CCSD were used to simulate the spectrum of each substituted oxirane ensemble. Computed spectra were then compared to the experiment using both qualitative and quantitative metrics. Based on these metrics, it was observed that certain conformers may not be necessary to characterize this set of oxiranes despite the temperature (323 K) of the experiment. A single conformer can then be used with TD-DFT and EOM-CCSD to replicate the experimental spectra of these medium-sized combustion species.

求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry A
The Journal of Physical Chemistry A 化学-物理:原子、分子和化学物理
CiteScore
5.20
自引率
10.30%
发文量
922
审稿时长
1.3 months
期刊介绍: The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信