Engineering of Rotational Dynamics via Polymorph Manipulation.

IF 2.7 2区 化学 Q3 CHEMISTRY, PHYSICAL
The Journal of Physical Chemistry A Pub Date : 2024-12-19 Epub Date: 2024-12-05 DOI:10.1021/acs.jpca.4c04964
Alfred Błażytko, Marzena Rams-Baron, Maria Książek, Joachim Kusz, Marek Matussek, Joanna Grelska, Marian Paluch
{"title":"Engineering of Rotational Dynamics via Polymorph Manipulation.","authors":"Alfred Błażytko, Marzena Rams-Baron, Maria Książek, Joachim Kusz, Marek Matussek, Joanna Grelska, Marian Paluch","doi":"10.1021/acs.jpca.4c04964","DOIUrl":null,"url":null,"abstract":"<p><p>We used dielectric spectroscopy to uncover the rotational dynamics of the fluorophenyl rotor in different polymorphs of two amphidynamic crystals with identical sizable cores. The rotor solid-state dynamics were investigated in various crystalline environments. We did not change the chemical structure of the crystal itself, but while maintaining the same atomic composition, we changed the arrangement of atoms in space by taking advantage of crystal polymorphism, providing an alternative approach to one based on searching for new, chemically different entities with desirable functionality. We demonstrated that via polymorph variation, we can efficiently improve rotor solid-state performance and reduce the rotational barrier height by 30%. Our findings advance the understanding of polymorph engineering as a prospective trend in amphidynamic crystal technology, which uses the phenomenon of crystal polymorphism to design crystals displaying applicable internal rotational dynamics.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":" ","pages":"10758-10765"},"PeriodicalIF":2.7000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.4c04964","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/5 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We used dielectric spectroscopy to uncover the rotational dynamics of the fluorophenyl rotor in different polymorphs of two amphidynamic crystals with identical sizable cores. The rotor solid-state dynamics were investigated in various crystalline environments. We did not change the chemical structure of the crystal itself, but while maintaining the same atomic composition, we changed the arrangement of atoms in space by taking advantage of crystal polymorphism, providing an alternative approach to one based on searching for new, chemically different entities with desirable functionality. We demonstrated that via polymorph variation, we can efficiently improve rotor solid-state performance and reduce the rotational barrier height by 30%. Our findings advance the understanding of polymorph engineering as a prospective trend in amphidynamic crystal technology, which uses the phenomenon of crystal polymorphism to design crystals displaying applicable internal rotational dynamics.

求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry A
The Journal of Physical Chemistry A 化学-物理:原子、分子和化学物理
CiteScore
5.20
自引率
10.30%
发文量
922
审稿时长
1.3 months
期刊介绍: The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信