Microneedle Electrode Patch Modified with Graphene Oxide and Carbon Nanotubes for Continuous Uric Acid Monitoring and Diet Management in Hyperuricemia.
Ziyi Zhao, Boyu Zhu, Xinru Li, Jiayi Cao, Min Qi, Lin Zhou, Bin Su
{"title":"Microneedle Electrode Patch Modified with Graphene Oxide and Carbon Nanotubes for Continuous Uric Acid Monitoring and Diet Management in Hyperuricemia.","authors":"Ziyi Zhao, Boyu Zhu, Xinru Li, Jiayi Cao, Min Qi, Lin Zhou, Bin Su","doi":"10.1021/acsabm.4c01286","DOIUrl":null,"url":null,"abstract":"<p><p>Hyperuricemia is a common disorder induced by purine metabolic abnormality, which will further cause chronic kidney disease, cardiovascular disease, and gout. Its main pathological characteristic is the high uric acid (UA) level in the blood, so that the detection of UA is highly important for hyperuricemia diagnosis and therapy. Herein, we report a biocompatible and minimally invasive microneedle electrode patch (MEP) for continuous UA monitoring and diet management in hyperuricemia. The composite of graphene oxide and carboxylated multiwalled carbon nanotubes was modified on the microneedle electrode surface to enhance its sensitivity, selectivity, and stability, thus realizing the continuous detection of UA in the interstitial fluid to accurately predict the UA level in the blood. This further allowed us to study the hypouricemic effect of anthocyanins on the hyperuricemia model mouse. It was found that anthocyanins extracted from blueberry can effectively inhibit the activity of xanthine oxidase to reduce the production of UA. The UA level of hyperuricemia model mice fed with anthocyanins is ∼1.7 fold lower than that of the control group. We believe that this MEP offers enormous promise for continuous UA monitoring and diet management in hyperuricemia.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"8456-8464"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.4c01286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Hyperuricemia is a common disorder induced by purine metabolic abnormality, which will further cause chronic kidney disease, cardiovascular disease, and gout. Its main pathological characteristic is the high uric acid (UA) level in the blood, so that the detection of UA is highly important for hyperuricemia diagnosis and therapy. Herein, we report a biocompatible and minimally invasive microneedle electrode patch (MEP) for continuous UA monitoring and diet management in hyperuricemia. The composite of graphene oxide and carboxylated multiwalled carbon nanotubes was modified on the microneedle electrode surface to enhance its sensitivity, selectivity, and stability, thus realizing the continuous detection of UA in the interstitial fluid to accurately predict the UA level in the blood. This further allowed us to study the hypouricemic effect of anthocyanins on the hyperuricemia model mouse. It was found that anthocyanins extracted from blueberry can effectively inhibit the activity of xanthine oxidase to reduce the production of UA. The UA level of hyperuricemia model mice fed with anthocyanins is ∼1.7 fold lower than that of the control group. We believe that this MEP offers enormous promise for continuous UA monitoring and diet management in hyperuricemia.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.