2,4-bisphenol S triggers physiological changes, oxidative stress and lipidome alterations in Gram-positive Enterococcus faecalis at environmental concentrations
{"title":"2,4-bisphenol S triggers physiological changes, oxidative stress and lipidome alterations in Gram-positive Enterococcus faecalis at environmental concentrations","authors":"Pengyu Chen, Baihui An, Yuxi Hu, Yuqiang Tao","doi":"10.1016/j.envpol.2024.125475","DOIUrl":null,"url":null,"abstract":"2,4-bisphenol S (2,4-BPS) was an emerging BPS analogue as color developers, widely found in the environment. Fish toxicities, cytotoxicity and antiestrogenic effects of 2,4-BPS have been documented at mg L<sup>-1</sup>, while the toxicity of 2,4-BPS at environmental concentrations (from ng L<sup>-1</sup> to μg L<sup>-1</sup>) were scarce. Bacteria are identified as important components of the ecosystem, while little is known regarding the ecotoxicity of 2,4-BPS on bacteria. <em>Enterococcus faecalis</em>, a good indicator of faecal contamination and anthropogenic pollution, was exposed to 0.5-50 nmol L<sup>-1</sup> 2,4-BPS. 2,4-BPS resulted in significantly decreased growth but notably increased membrane permeability in <em>E. faecalis</em> compared with the control. Hormetic effects on the expression of genes involved in DNA replication and efflux were observed. Inhibition of biofilm formation and induction of oxidative stress were caused by 0.5, 5 and 50 nmol L<sup>-1</sup> 2,4-BPS. Fatty acyls, glycerolipids and glycerophospholipids were differentially regulated by 2,4-BPS. Glycerolipid metabolism and glycine, serine and threonine metabolism were significantly altered by 0.5 nmol L<sup>-1</sup> 2,4-BPS, compared with glycerophospholipid metabolism disturbed by 5 and 50 nmol L<sup>-1</sup> 2,4-BPS, showing concentration-dependent responses. Trend analysis of differential lipids demonstrated that there were three significant clusters, all of which were enriched in glycerophospholipid metabolism. 2,4-BPS elicited the strongest lipidomic responses at 5 nmol L<sup>-1</sup>. Our study provides evidence for 2,4-BPS-induced toxicity to <em>E. faecalis</em> at environmental concentrations and contributes to a comprehensive understanding of the interaction between 2,4-BPS and Gram-positive bacteria.","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":"122 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Pollution","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.envpol.2024.125475","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
2,4-bisphenol S (2,4-BPS) was an emerging BPS analogue as color developers, widely found in the environment. Fish toxicities, cytotoxicity and antiestrogenic effects of 2,4-BPS have been documented at mg L-1, while the toxicity of 2,4-BPS at environmental concentrations (from ng L-1 to μg L-1) were scarce. Bacteria are identified as important components of the ecosystem, while little is known regarding the ecotoxicity of 2,4-BPS on bacteria. Enterococcus faecalis, a good indicator of faecal contamination and anthropogenic pollution, was exposed to 0.5-50 nmol L-1 2,4-BPS. 2,4-BPS resulted in significantly decreased growth but notably increased membrane permeability in E. faecalis compared with the control. Hormetic effects on the expression of genes involved in DNA replication and efflux were observed. Inhibition of biofilm formation and induction of oxidative stress were caused by 0.5, 5 and 50 nmol L-1 2,4-BPS. Fatty acyls, glycerolipids and glycerophospholipids were differentially regulated by 2,4-BPS. Glycerolipid metabolism and glycine, serine and threonine metabolism were significantly altered by 0.5 nmol L-1 2,4-BPS, compared with glycerophospholipid metabolism disturbed by 5 and 50 nmol L-1 2,4-BPS, showing concentration-dependent responses. Trend analysis of differential lipids demonstrated that there were three significant clusters, all of which were enriched in glycerophospholipid metabolism. 2,4-BPS elicited the strongest lipidomic responses at 5 nmol L-1. Our study provides evidence for 2,4-BPS-induced toxicity to E. faecalis at environmental concentrations and contributes to a comprehensive understanding of the interaction between 2,4-BPS and Gram-positive bacteria.
期刊介绍:
Environmental Pollution is an international peer-reviewed journal that publishes high-quality research papers and review articles covering all aspects of environmental pollution and its impacts on ecosystems and human health.
Subject areas include, but are not limited to:
• Sources and occurrences of pollutants that are clearly defined and measured in environmental compartments, food and food-related items, and human bodies;
• Interlinks between contaminant exposure and biological, ecological, and human health effects, including those of climate change;
• Contaminants of emerging concerns (including but not limited to antibiotic resistant microorganisms or genes, microplastics/nanoplastics, electronic wastes, light, and noise) and/or their biological, ecological, or human health effects;
• Laboratory and field studies on the remediation/mitigation of environmental pollution via new techniques and with clear links to biological, ecological, or human health effects;
• Modeling of pollution processes, patterns, or trends that is of clear environmental and/or human health interest;
• New techniques that measure and examine environmental occurrences, transport, behavior, and effects of pollutants within the environment or the laboratory, provided that they can be clearly used to address problems within regional or global environmental compartments.