Triboelectric sensor with ultra-wide linear range based on water-containing elastomer and ion-rich interface

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Siyao Qin, Peng Yang, Zhaoqi Liu, Jun Hu, Ning Li, Liming Ding, Xiangyu Chen
{"title":"Triboelectric sensor with ultra-wide linear range based on water-containing elastomer and ion-rich interface","authors":"Siyao Qin, Peng Yang, Zhaoqi Liu, Jun Hu, Ning Li, Liming Ding, Xiangyu Chen","doi":"10.1038/s41467-024-54980-x","DOIUrl":null,"url":null,"abstract":"<p>The incompatibility of the high sensitivity and wide linear range still restricts the further development of active sensors. Here we report a triboelectric pressure sensor based on water-containing triboelectric elastomer with gradient-based microchannels. Tiny amount of liquid is injected into the triboelectric elastomer and the pressure-induced water bridges can modulate the built-in electric field of the sensor, which enhance the signal linearity near the compression limit. Moreover, it has been found that liquid-solid contact electrification can be enhanced by triggering selective ionic transfer, while the prepared ion-rich interface in the microchannels boosts the sensitivity of the sensor. Hence, an ultra-wide linear range (5 kPa–1240 kPa) with a sensitivity of 0.023 V kPa<sup>−1</sup> can be achieved, which is so far the widest linear range of active sensors to our knowledge. Our work can promote the practical application of triboelectric sensors and provide new insights for other sensory devices.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"1 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54980-x","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The incompatibility of the high sensitivity and wide linear range still restricts the further development of active sensors. Here we report a triboelectric pressure sensor based on water-containing triboelectric elastomer with gradient-based microchannels. Tiny amount of liquid is injected into the triboelectric elastomer and the pressure-induced water bridges can modulate the built-in electric field of the sensor, which enhance the signal linearity near the compression limit. Moreover, it has been found that liquid-solid contact electrification can be enhanced by triggering selective ionic transfer, while the prepared ion-rich interface in the microchannels boosts the sensitivity of the sensor. Hence, an ultra-wide linear range (5 kPa–1240 kPa) with a sensitivity of 0.023 V kPa−1 can be achieved, which is so far the widest linear range of active sensors to our knowledge. Our work can promote the practical application of triboelectric sensors and provide new insights for other sensory devices.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
文献相关原料
公司名称 产品信息 采购帮参考价格
阿拉丁 FeCl3
阿拉丁 FeCl3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信