Quantum Efficiency and Vertical Position of Quantum Emitters in hBN Determined by Purcell Effect in Hybrid Metal-Dielectric Planar Photonic Structures

IF 6.5 1区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Domitille Gérard, Aurélie Pierret, Helmi Fartas, Bruno Berini, Stéphanie Buil, Jean-Pierre Hermier, Aymeric Delteil
{"title":"Quantum Efficiency and Vertical Position of Quantum Emitters in hBN Determined by Purcell Effect in Hybrid Metal-Dielectric Planar Photonic Structures","authors":"Domitille Gérard, Aurélie Pierret, Helmi Fartas, Bruno Berini, Stéphanie Buil, Jean-Pierre Hermier, Aymeric Delteil","doi":"10.1021/acsphotonics.4c01416","DOIUrl":null,"url":null,"abstract":"Color centers in hexagonal boron nitride (hBN) advantageously combine excellent photophysical properties with the potential for integration in highly compact devices. Progress toward scalable integration necessitates a high quantum efficiency and an efficient photon collection. In this context, we compare the optical characteristics of individual hBN color centers generated by electron irradiation in two different electromagnetic environments. We keep track of well-identified emitters that we characterize before and after the dry transfer of exfoliated crystals. This comparison provides information about their quantum efficiency, which we find close to unity, as well as their vertical position in the crystal with nanometric precision, which we find away from the flake surfaces. Our work suggests hybrid dielectric-metal planar structures as an efficient tool for characterizing quantum emitters in addition to improving the count rate and can be generalized to other emitters in 2D materials or in planar photonic structures.","PeriodicalId":23,"journal":{"name":"ACS Photonics","volume":"17 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1021/acsphotonics.4c01416","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Color centers in hexagonal boron nitride (hBN) advantageously combine excellent photophysical properties with the potential for integration in highly compact devices. Progress toward scalable integration necessitates a high quantum efficiency and an efficient photon collection. In this context, we compare the optical characteristics of individual hBN color centers generated by electron irradiation in two different electromagnetic environments. We keep track of well-identified emitters that we characterize before and after the dry transfer of exfoliated crystals. This comparison provides information about their quantum efficiency, which we find close to unity, as well as their vertical position in the crystal with nanometric precision, which we find away from the flake surfaces. Our work suggests hybrid dielectric-metal planar structures as an efficient tool for characterizing quantum emitters in addition to improving the count rate and can be generalized to other emitters in 2D materials or in planar photonic structures.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Photonics
ACS Photonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.90
自引率
5.70%
发文量
438
审稿时长
2.3 months
期刊介绍: Published as soon as accepted and summarized in monthly issues, ACS Photonics will publish Research Articles, Letters, Perspectives, and Reviews, to encompass the full scope of published research in this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信